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PREFACE

The study of algorithms is at the very heart of computer science:- In redent
years a number of significant advances in the field of algorithms have béen
made. These advances have ranged from the development of faster; algorithms,
such as the fast Fourier transform. to the startling discovery of-certain natural.
problems-for which all algorithms are inefficient. These results have kindled
considerable interest in the study of algorithms. and the area of algorithm de-
sign and analysis has blossomed into a field of intense interest. The intent of
this book is to bring together the fundamental results in this area, so the uni-
fying principles and underlymg concepts of algorithm design may more easily
be taught.

.

THE SCOPE OF THE BOOK 4

To analyze the performance of an algorithm some model of a computer is
necessary. Our book begins by formulating several computer models which
are simple enough to establish analytical results but which at the same time
accurately reflect the salient features of real machines. These models include
the random access register machine. the random access stored program ma-
chine, and some specialized variants of these. The Turing machine is intro-
duced in order to prove the exponential lower bounds on efficiency in Chaptess.
10 and 11. Since the trend in program design is away from machine language,
a high-level language called Pidgin ALGOL is introduced as the main vehicle
for describing algorithms. The complexity of a Pidgin ALGOL program is
related to the machine models.

The second chapter introduces basic data structures and programming
techniques often used in efficient algorithms. It covers the use of lists. push-
down stores. queues. trees. and graphs. Detailed explanations of recursion.
divide-and-conquer. and dynamic progrdmmmg are given. along with examples
of their use.

Chapters 3 to 9 provide a samplmg of the diverse areas to which the funda-
memal techniques of Chapter 2 can be applied. Our emphasm in these chap-
ters is on developing algorithms that are dsvmplotlcally the most éfficient
known. Because of this emphasis, some of the algorithms. presented are suit-
able only for inputs whose size is much larger than what is currently encoun-
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tered in practice. This is particularly true of some of the matrix multiplication
algorithms in Chapter 6, the Schonhage-Strassen integer-muitiplication algo-
rithm of Chapter 7. and some of the polynomial and integer algorithms of
Chapter 8. ,

On the other hand, most of the sorting algorithms of Chapter 3, the search-
ing algorithms of Chapter 4, the graph algorithms of Chapter 5, the fast Fourier
transform of Chapter 7, and the string-matching algorithms of Chapter 9 are
widely used, since the sizes of inputs for which these algorithms are efficient
are sufficiently small to be encountered in many practical situations.,

Chapters 10 through 12 discuss lower bounds on computational com-
plexity. The inherent computational difficulty of a problem is of universal
interest. both to program design and to an understanding of the nature of com-
putation. In Chapter 10 an important class of problems, the NP-complete
probleins, is studied. All problems in this class are equivalent in computa-
tional difficulty, in that if one problem in the class has an efficient (polynomial
time-bounded) solution, then all problems in the class have efficient solutions.
Since this class of problems contains many practically important and well-
studied problems, such as the integer-programming problem and the traveling
salesman problem, there is good reason to suspect that no problem ir this class
can be solved efficiently. Thus, if a program designer knows that the problem
for which he is trying to find an efficient algorithm is in this class, then he may
very well be content to try heuristic approaches to the problem. In spite of the
overwhelming empirical evidence to the contrary, it is still an cpen question
whether NP-complete problems admit of efficient solutions.

In Chapter 11 certain problems are defined for which we can actually
prove that no efficient algorithms exist. The material in Chapters 10 and 11
draws heavily on the concept of Turing machines introduced in Sections 1.6
and 1.7. ' ‘

In the final chapter of the book we relate concepts of computational dif-
ficulty to notions of linear independence in vector spaces. The material in this
chapter provides techniques for proving lower bounds for much simpler prob-
lems than those considered in Chapters 10 and 11.
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THE USE OF THE BOOK

This' book is intended as a first course in the design and analysis of algerithms.
The emphasis is on ideas and ease of understanding rather than implementa-
tion details or programming tricks. Informal, intuitive explanations are often
used in place of long tedious proofs. The book is self-contained and assumes
no specific background in mathematics or programming languages. However,
a certain amount of maturity in being able to handle mathematical concepts is
desirable, as is some exposure to a higher-level programming language such as
FORTRAN or ALGOL. Some knowledge of linear algebra is needed for a
full understanding of Chapters 6, 7, &, and 12. A

This book has been used in graduate and undergraduate courses in algo-
rithm design. In a one-semester course most of Chapters 1-5 and 9-10 were
covered, aiong with a smattering of topics from the remaining chapters. In
introductory courses the emphasis was on material from Chapters 1-5, but
Sections 1.6, 1.7, 4.13, 5.11, and Theorem 4.5 were generally not covered.
The book can also be used in more advanced courses emphasizing the theory of
algorithms. Chapters 6-12 could serve as the foundation for such a course.

Numerous exercises have been provided at the end of each chapter to
provide an instructor with a wide range of homework problems. The exercises
are graded according to difficulty. Exercises with no stars are suitable for in-
troductory courses, singly starred exercises for more advanced courses, and
doubly starred exercises for advanced graduate courses. The bibliographic
notes at the end of every chapter attempt to point to a published source for
each of the algorithms and results contained in the text and the exercises.
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2 MODELS OF COMPUTATION 1.1

Given a problem. how do we find an efficient algorithm for its solution? Once
we have found an algorithm. how can we compare this algorithm with other
algorithms that solve the same problem? How should we judge the goodness
of an algorithm? Questions of this nature are of interest both to programmers
and to theoretically oriented computer scientists. In this book we shall ex-
amine various lines of research that attempt to answer questions such as these.

In this chapter we consider several models of a computer—the random
access machine, the random access stored program machine, and the Turing
machine. We compare these models on the basis of their ability to reflect
the complexity of an algorithm, and derive from them several more specialized
models of computation, namely, straight-line arithmetic sequences, bitwise
computations, bit vector computations, and decision trees. Finally, in the
last section of this chapter we introduce a language called *‘Pidgin ALGOL”
_ for describing algorithms.

1.1 ALGORITHMS AND THEIR COMPLEXITY

Algorithms can be evaluated by a variety of criteria. Most often we shall
be interested in the raie of growth of the time or space required to solve larger
and larger instances of a problem. We would like to associate with a problem
an integer, called the size of the problem, which is a measure of the quantity
of input data. For example, the size of a matrix multiplication problem might
be the largest dimension of the matrices to be multiplied. The size of a graph
problem might be the number of edges.

The time needed by an algorithm expressed as a function of the size of
a problem is called the rime complexity of the algorithm. The limiting be-
havior of the complexity as size increases is called the asymptotic time com-
plexity. Analogous definitions can be made for space complexity and asymp-
totic space complexity.

It is the asymptotic complexity of an algorithm which ultimately deter-
mines the size of problems that can be solved by the algorithm. If an algo-
rithm processes inputs of size n in time cn® for some constant ¢, then we say
that the time complexity of that algorithm is O(n*), read “‘order n2.”” Morz
precisely, a function g(n1) is said to be Q{f(n)) if there exists a constant ¢
such that g(n) = ¢f(n) for all but some finite (possibly empty) set of non-
negative values for n. ‘

One might suspect that the tremendous increase in the speed of calcula-
tions brought about by the advent of the present generation of digital com-
puters would decrease the importance of efficient algorithms. However, just
the opposite is true. As computers become faster and we can handle larger
problems, it is the complexity of an algorithm that determines the increase
in problem size that can be achieved with an increase in computer speed.

Suppose we have five algorithms A4,-As with the following time com-
plexities.
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Time complexity
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n log nt
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The time complexity here is the number of time units required to process an
input of size n. Assuming that one unit of time equals one millisecond, aigo-
rithm A, can process in one second an input of size 1000, whereas algorithm
Aj; can process in one second an input of size at most 9. Figure 1.1 gives the
sizes of problems that can be solved in one second, one minute, and one hour
by each of these five algorithms.

Maximum problem size
Time

Algorithm complexity 1 sec 1 min 1 hour
A, n 1000 6 X 10¢ 3.6 X 10¢
A, n log 140 4893 2.0 X 103
A, n? 31 244 1897
A, n 10 39 153
As 2" 9 15 21

Fig. 1.1. Limits on problem size as determined by growth rate.

Maximum Maximum
Time problem size problem size
Algorithm complexity before speed-up after speed-up
A, n s 10s,
A, nlog n S, Approximately 10s,
for large s,
Ay n” S3 3,165,
A, " Sy 2.15s,
As an Ss s+ 3.3

Fig. 1.2. Effect of tenfold speed-up.

t Unless otherwise stated, all logarithms in this book are to the base 2.
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Suppose that the next generation of computers is ten times faster than the
current generation. Figure 1.2 shows the increase in the size of the problem
we can solve due to this increase in speed. Note that with algorithm A;. a
tenfold increase in speed only increases by three the size ¢f problem that can
be solved. whereas with algorithm A, the size more than triples.

instead of an increase in speed. consider the effect of using a more efficient
algorithm. Refer again to Fig. 1.1. Using one minute as a basis for com-
parison. by replacing algorithm A, with 4, we can solve a problem six times
larger: by replacing A, with A, we can solve a problem 125 times larger. These
results are far more impressive than the twofold improvement obtained by a
tenfold increase in speed. If an hour is used as the basis of comparison. the
differences are even more significant. We conclude that the asymptotic com-
plexity of an algorithm is an important measure of the goodness of an algorithm,
one that promises to become even more important with future increases in
computing speed. ,

Despite our concentration on order-of-magnitude performance. we should
realize that an algorithm with a rapid growth rate might have a smaller con-
stant of proportionality than one with a lower growth rate. In that case, the
rapidly growing algorithm might be superior for small problems, possibly even
for all problems of a size that would interest us. For example, suppose the
time complexities of algorithms A4,. A,. A;. A,, and A4 were really 1000n.
i0Gn log n, 10#*, n*, and 2". Then A; would be best for problems of size
2 =n=9,A4; would be best for 10 = n = 58. 4, would be best for 59 = n =
1024, and A4, best for problems of size greater than 1024.

Before going further with our discussion of algorithms and their com-
plexity, we must specify a model of a computing device for executing algo-
rithms and define what is meant by a basic step in a computation. Unfortu-
nately. there is no one computational model which is suitable for all situations.
One of the main difficulties arises from the size of computer words. For ex-
ample. if one assumes that a computer word can hold an integer of arbitrary
size. then an entire problem could be encoded into a single integer in one com-
puter word. On the other hand. if a computer word is assumed to be finite,
one must consider the difficulty of simply storing arbitrarily large integers, as
well as other problems which one often avoids when given problems of modest
size. For each problem we must select an apprepriate model which will
accurately reflect the actual computation time on a real computer.

In the following sections we discuss several fundamental models of com-
puting devices, the more important models being the random access machine,
the random access stored program machine, and the Turing machine. These
three models are equivalent in computational power but not in speed.

Perhaps the most important motivation for formal models of computation
is the desire to discover the inherent computational difficulty of various prob-
lems. We would like to prove lower bounds on computation time. In order
to show that there is no algorithm to perform a given task in less than a certain
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amount of time, we need a precise and often highly stylized definition of what
constitutes an algorithm. Turing machines (Section 1.6) are an example of
such a definition.

In describing and communicating algorithms we would like a notation
more natural and easy to understand than a program for a random access ma-
chine. random access stored program machine, or Turing machine. For this
reason we shall also introduce a high-level language called Pidgin ALGOL.
This is the language we shall use throughout the book to describe algorithms.
However, to understand the computational complexity of an algorithm de-
scribed in Pidgin ALGOL we must relate Pidgin ALGOL to the more formal
models. This we do in the last section of this chapter.

1.2 RANDOM ACCESS MACHINES

A random access machine (RAM) models a one-accumulator computer in
which instructions are not permitted to modify themselves.

A RAM consists of a read-only input tape, a write-only output tape, a
program, and a memory (Fig. 1.3). The input tape is a sequence of squares,
each of which holds an integer (possibly negative). Whenever a symboi is
read from the input tape, the tape head moves one square to the right. The
output is a write-only tape ruled into squares which are initially all blank.
When a write instruction is exécuted, an integer is printed in the square of the

Read-only
X X2 Xn input tape

r ————————————————————————————————————————— B
l )
| ro Accumulator =
|
| | Location P ,. |
| | counter rogram ! |
I |
| r '
i ! |
i |
| s l
I |
| |
| |
; |

|
b fom o Memey J

Y1 V2

Write-only
output tape

Fig. 1.3 A random access machine,
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output tape that is currently under the output tape head. and the tape head is
moved one square to the right. Once an output symbol has been written. it
cannot be changed.

The memory consists of a sequence of registers, ry. ry. . ... r,...,each
of which is capable of holding an integer of arbitrary size. We place no upper
bound on the number of registers that can be used. This abstraction is valid
in cases where:

I. the size of the problem is small enough to fit in the main memory cf a
computer, and

2. the integers used in the computation are small enough to fit in one com-
puter word.

The program for.a RAM is not stored in the memory. Thus we are
assuming that the program does not modify itself. The program is merely a
sequence of (optionally) labeled instructions. The exact nature of the instruc-
tions used in the program is not too important. as long as the instructions re-
semble those usually found in real computers. We assume there are arith-
metic instructions, input-output instructions, indirect addressing (for indexing
arrays, e.2.) and branching instructions. All computation takes place in the
first register ry, called the accumulator, which like every other memory reg-
ister can hold an arbitrary integer. A sample set of instructions for the RAM
is shown in Fig. 1.4. Each instruction consists of two parts —an operation
code and an address.

In principle, we could augment our set with any other instructions found
in real computers, such as logical or character operations, without altering the
order-of-magnitude complexity of problems. The reader may imagine the
instruction set to be so augmented if it suits him.

Operation code Address
1. LOAD operand
2. STORE operand
3. ADD operand
4. SUB operand
S. MULT operand
6. DIV operand
7. READ operand
8. WRITE operand
9. JUMP label
10. JGTZ label
11. JZERO label
12. HALT

Fig. 1.4. Table of RAM instructions.
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An operand can be one of the following:

=i, indicating the integer i/ itself.

A nonnegative integer i, indicating the contents of register i.

i, indicating indirect addressing. That is, the operand is the contents
of register j, where j is the integer found in register i. If j < 0. then the
machine halts.

)

These instructions should be quite familiar to anyone who has programmed
in assembly language. We can define the meaning of a program P with the
help of two quantities, a mapping ¢ from nonnegative integers to integers
and a ‘“location counter’ which determines the next instruction to execute.
The function ¢ is a memory map; c(i) is the integer stored in register i (the
contents of register /).

Initially, c(i) = 0 for all i = 0, the location counter is set to the first in-
struction in P, and the output tape is all blank. After execution of the Ath
instruction in P, the location counter is automatically set to A+ 1 (i.e.. the
next instruction). unless the Ath instruction is JUMP, HALT, JGTZ. or
JZERO.

To specify the meaning of an instruction we define v{a), the value of
operand a, as follows:

y(=i) =i,
v(i) =c(i),

v(*i) =c(c(i)).

The table of Fig. 1.5 defines the meaning of each instruction in Fig. 1.4. In-
structions not defined, such as STORE =i, may be considered equivalent to
HALT. Likewise, division by zero halts the machine.

During the execution of each of the first eight instructions the location
counter is incremented by one. Thus instructions in the program are executed
in sequential order until a JUMP or HALT instruction is encountered, aJGTZ
instruction is encountered with the contents of the accumulator greater than
Zero, or a JZERO instruction is encountered with the contents of the accumu-
lator equal to zero.

In general, a RAM program defines a mapping from input tapes to output
tapes. Since the program may not halt on ail input tapes, the mapping is a
partial mapping (that is, the mapping may be undefined for certain inputs).
The mapping can be interpreted in a variety of ways. Two important inter-
Pretations are as a function or as a language.

Suppose a program P always reads n integers from the input tape and
}\'rites at most one integer on the output tape. If, when x;, x,. ... .. v, are the
Integers in the first n squares of the input tape. P writes ¥ on the first square
of the output tape and subsequently halts. then we say that P computes the
function f(x,. x,.....x,) =0y. Itis easily shown that a RAM. like any other
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Instruction Meaning

1. LOAD a c(0) <« v(a)

2. STORE i c(i) < c(0)

STORE =i c(e(i)) < ¢c(0)

3. ADDa c(0) < ¢(0) + v(a)

4. SUB «a c(0) <« c(0) —v(a)

5. MULT a c(0) <« ¢(0) X v(a)

6. DIV «a c(0) < |c(0)/v(a)]t

7. READ ¢(i) < current input symbol.

READ =i c(c(i)) < current input symbol. The input tape head
moves one square right in either case.

8. WRITE « v(a) is printed on the square of the output tape currently
under the output tape head. Then the tape head is moved
one square right.

9. JUMP b The location counter is set to the instruction labeled 4.

10. JGTZ b The location counter is set to the instruction labeled b if

c(0) > 0; otherwise, the location counter is set to the
next instruction.

I1. JZERO b The location counter is set to the instruction labeled b if
¢(0) = 0; otherwise, the location counter is set to the
next instruction.

12. HALT Execution ceases.

+ Throughout this book, [x] (ceiling of x) denotes the least integer equal to or greater than x, and
LxJ (floor, or integer part of x) denotes the greatest integer equal to or less than x.

Fig. 1.5. Meaning of RAM instructions. The operand a is either =i, i, or *i.

reasonable model of a computer, can compute exactly the partial recursive
functions. That is, given any partial recursive function f we can define a
RAM program that computes f, and given any RAM program we can define
an equivalent partial recursive function. (See Davis [1958] or Rogers [1967]
for a discussion of recursive functions.)

Another way to interpret a RAM program is as an acceptor of a language.
An alphabetr is a finite set of symbols, and a language is a set of strings over
some alphabet. The symbols of an alphabet can be represented by the inte-
gers 1,2....,k for some k. A RAM can accept a language in the following
manner. We place an input string s = a,a, * - * a, on the input tape, placing
the symbol a, in the first square, the symbol a, in the second square, and so on.
We place 0. a symbol we shall use as an endmarker. in the (n + 1)st square
to mark the end of the input string.
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The input string s is accepted by a RAM program P if P reads all of s
and the endmarker, writes a | in the first square of the output tape, and halts.
The language accepted by P is the set of accepted input strings. For input
strings not in the language accepted by P, P may print a symbol other than |
on the output tape and halt, or P may not even halt. It is easily shown that a
language is accepted by a RAM program if and only if it is recursively enumer-
able. A language is accepted by a RAM that halts on all inputs if and only if
it is a recursive language (see Hopcroft and Ullman [1969] for a discussion
of recursive and recursively enumerable languages).

Let us consider two examples of RAM programs. The first defines a
function: the second accepts a language.

Example 1.1. Consider the function f(n) given by

_[n" for all integers n = 1,
fln) = {O otherwise.
A Pidgin ALGOL program which computes f(n) by multiplying n by itself
n—1 times is illustrated in Fig. 1.6.f A corresponding RAM program is

given in Fig. 1.7. The variables rl1, r2, and r3 are stored in registers 1, 2,
and 3 respectively. Certain obvious optimizations have not been made, so
the correspondence between Figs. 1.6 and 1.7 will be transparent. (J

begin
read r1;
if r1 =< O then write O
else
begin
r2 «<ril;
r3<«rl—1;
while r3 > 0 do
. begin
r2 < r2 *rl;
r3<—r3—1
end;
write r2
end
end

Fig. 1.6. Pidgin ALGOL program for n".

t See Section 1.8 for a description of Pidgin ALGOL.
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Corresponding
RAM program Pidgin ALGOL statements

READ | read r|
LOAD ] l

JGTZ pos
WRITE =
JUMP endif
pos: LOAD } . R
STORE
LOAD
SUB 1 } r3 —rl—1
STORE
while: LOAD }

if r1 < O then write 0

ww“ — D —

JGTZ continue while r3 > 0 do
JUMP endwhile

continue: LOAD
MULT
STORE
LOAD
SUB
STORE
JUMP

endwhile: WRITE

endif: HALT

] r2 «r2#ri
] r3 «—r3—1
hile

write 12

logu"wu_g

Fig. 1.7. RAM program for n”".

Example 1.2. Consider a RAM program that accepts the language over the
input alphabet {1. 2} consisting of all strings with the same number of I's
and 2's. The program reads each input symbol into register 1 and in register
2 keeps track of the difference d between the number of 1's and 2’s seen so far.
When the endmarker 0 is encountered. the program checks that the difference
is zero, and if so prints 1 and halts. We assume that 0, |. and 2 are the only
possible input symbols.

The program of Fig. 1.8 contains the essential details of the algorithm.
An equivalent RAM program is given in Fig. 1.9: x is stored in register 1 and
d in register 2. (J
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begin
d —0:
read x:
while x # 0 do
begin
ifx+# lthend—d—lelsed —d+1:
read x
end;
if d = 0 then write |
end

Fig. 1.8. Recognizing strings with equal numbers of 1's and 2’s.

Corresponding
RAM program Pidgin ALGOL statements

LOAD
STORE
READ
while: LOAD
JZERO
LOAD
SUB
JZERO
LOAD
SUB
STORE
JUMP
one: LOAD
ADD
STORE
endif: READ
JUMP  while
endwhile: LOAD 2
JZERO output
HALT
output: WRITE =1
HALT

(=]

} d—0
i read x

n dwhile} while x # 0 do

if x =1

Ol =3 ——=w |

= R,
(47
————

—_—

thend «—d— 1

] > elsed —d+1

[ SY o
o =.u [ S

£

-

read x

if d = 0 then write 1

Fig. 1.9. RAM program corresponding to algorithm in Fig. 1.8.
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1.3 COMPUTATIONAL COMPLEXITY OF RAM PROGRAMS

Two important measures of an algorithm are its time and space complexity.
measured as functions of the size of the input. If for a given size the com-
plexity is taken as the maximum complexity over all inputs of that size. then
the complexity is called the worst-case complexity. If the complexity is taken
as the average™ complexity over all inputs of given size. then the complexity
is called the expected complexity. The expected complexity of an algorithm
is usually more difficult to ascertain than the worst-case complexity. One
must make some assumption about the distribution of inputs. and realistic
assumptions are often not mathematically tractable. We shall emphasize the
worst case. since it is more tractable and has a universal applicability. How-
ever. it should be borne in mind that the algorithm with the best worst-case
complexity does not necessarily have the best expected complexity.

The worst-case time complexity (or just time complexity) of a RAM pro-
gram is the function f(n) which is the maximum, over all inputs of size n. of
the sum of the “time™ taken by each instruction executed. The expected time
complexity is the average. over all inputs of size n, of the same sum. The
same terms are defined for space if we substitute " ‘space’ used by each reg-
ister referenced’” for ** ‘time’ taken by each instruction executed.”

To specify the time and space complexity exactly, we must specify the
time required to execute each RAM instruction and the space used by each
register. We shall consider two such cost criteria for RAM programs. Under
the wuniform cost criterion each RAM instruction requires one unit of time
and each register requires one unit of space. Unless otherwise mentioned.
the complexity of a RAM program will be measured according to the uniform
cost criterion.

A second. sometimes more realistic definition takes into account the
limited size of a real memory word and is called the logarithmic cost criterion.
Let /(i) be the following logarithmic function on the integers:

[(l.)={[log lil] + 1. {#0
1, i=0
The table of Fig. 1.10 summarizes the logarithmic cost t(«) for the three pos-

sible forms of an operand «. Figure 1.11 summarizes the time required by
each instruction.

Operand «a Cost r(a)
=i (i)
i (i) + 1(cti))
#f 1)y + Heti)) + Heleti)))

Fig. 1.10. Logarithmic cost of an operand.
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Instruction Cost

1. LOAD a t(a)
2. STORE { [(c(0)) + 1(i)

STORE *i 1(c(0)) +1(i) +1(c(i))
3. ADDu« [(c(0)) + t(a)
4. SUB a [(c(0)) + t(a)
S. MULT « [(c(0)) +.t(a)
6. DIV a 1(c(0)) +1t(a)
7. READ [(input) + (i)

READ =/ [(input) + I(i) + (c(i))
8. WRITE a t(a)
9. JUMP b 1
10. JGTZ b 1(c(0))
11. JZERO b 1(c(0))
12. HALT 1

Fig. 1.11. Logarithmic cost of RAM instructions,
where t(a) is the cost of operand a, and b denotes a
label.

The cost takes into account the fact that |log n] + 1 bits are required to
represent the integer n in a register. Registers, we recall, can hold arbitrarily
large integers.

The logarithmic cost criterion is based on the crude assumption that the
cost of performing an instruction is proportional to the length of the operands
of the instructions. For example, consider the cost of instruction ADD =i.
First we must determine the cost of decoding the operand represented by
the address. To examine the integer i requires time /(/). Then to read c(i),
the contents of register i, and locate register c(i) requires time /(c({)). Finally,
reading the contents of register ¢(i) costs /(c(c(i))). Since the instruction
ADD =«i adds the integer c(c(i)) to ¢(0), the integer in the accumulator, we see
that /(¢(0)) + I(/) + l(c(i)) + l(c(c(i))) is a reasonable cost to assign to the in-
struction ADD =i.

We define the logarithmic space complexity of a RAM program to be the
sum over all registers, including the accumulator, of /(x;), where x; is the inte-
ger of largest magnitude stored in register / at any time during the computation.

It goes without saying that a given program may have radically different
time complexities depending on whether the uniform or logarithmic cost is
used. If it is reasonable to assume that each number encountered in a prob-
lem can be stored in one computer word, then the uniform cost function is
appropriate. Otherwise the logarithmic cost might be more appropriate for
a realistic complexity analysis.
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Let us compute the time and space complexity of the RAM program in
Example 1.1. which evaluates n”. The time complexity of the program is
dominated by the loop with the MULT instruction. The ith time the MULT
instruction is executed the accumulator contains n' and register 2 contains n.
A total of n — 1 MULT instructions are executed. Under the uniform cost
criterion. each MULT instruction costs one unit of time. and thus O(n) time
is spent in executing all the MULT instructions. Under the logarithmic cost
criterion, the cost of executing the ith MULT instruction is {(n') + [(n) =
(i + 1) log n. and thus the total cost of the MULT instructions is

n—=1
(i+1) log n.
i=1
which is O(n® log n).

The space complexity is determined by the integers stored in registers
0 to 3. Under the uniform cost the space complexity is simply O(1). Under
the logarithmic cost, the space complexity is O(n log n), since the largest in-
teger stored in any of these registers is n", and /(n") = nlogn. Thus we have
the following complexities for the program of Example 1.1.

Uniform | Logarithmic

l cost ! cost
Time complexity ! O(n) O (n?® log n)
Space complexity | O(1) | O(nlogn)

For this program the uniform cost is realistic only if a single computer word
can store an integer as large as n". If n" is larger than what can be stored in
one computer word, then even the logarithmic time complexity is somewhat
unrealistic, since it assumes that two integers / and j can be multiplied together
in time O(/(i{) + [(j)), which is not known to be possible.

For the RAM program in Example 1.2. assuming » is the length of the
input string, the time and space complexities are:

' Uniform | Logarithmic

cost l cost
Time complexity ‘ O(n) l O(n log n)
Space complexity o(l) - Ollog n)

For this program. if n is larger than what can be stored in one computer word.
the logarithmic cost is quite realistic.
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1.4 A STORED PROGRAM MODEL

Since a RAM program is not stored in the memory of the RAM. the program
cannot modify itself. We now consider another model of a computer, called
a random access stored program machine (RASP), which is similar to a RAM
with the exception that the program is in memory and can modify itself.

The instruction set for a RASP is identical to that for a RAM. except
indirect addressing is not permitted since it is not needed. We shall see that
a RASP can simulate indirect addressing by the modification of instructions
during program execution.

The overall structure of a RASP is also similar to that of a RAM. but
the program of a RASP is assumed to be in the registers of the memory. Each
RASP instruction occupies two consecutive memory registers. The first
register_holds an encoding of the operation code: the second register holds
the address. If the address is of the form =i, then the first register will also
encode the fact that the operand is a literal. and the second register will con-
tain i. Integers are used to encode the instructions. Figure 1.12 gives one
possible encoding. For example, the instruction LOAD =32 would be stored
with 2 in one register and 32 in the following register.

As for a RAM. the state of a RASP can be represented by:

1. the memory map c. where c¢(i), i = 0. is the contents of register /. and
the location counter. which indicates the first of the two consecutive
memory registers from which the.current instruction is to be taken.

A9

Initially, the location counter is set at some specified register. The ini-
tial contents of the memory registers are usually not all 0, since the program
has been loaded into the memory at the start. However. we insist that all but
a finite number of the registers contain 0 at the start and that the accumulator
contain 0. After each instruction is executed, the location counter is increased

Instruction Encoding Instruction Encoding
LOAD 1 DIV i 10
LOAD =i 2 DIV =i 11
STORE | 3 READ i 12
ADD i 4 WRITE i 13
ADD =i S WRITE =i 14
SUB i 6 JUMP 15
SUB =/ 7 JGTZ i 16
MULT i 8 JZERO i 17
MULT =i 9 HALT 18

Fig. 1.12. Code for RASP instructions.
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by 2. except in the case of JUMP i, JGTZ i (when the accumulator is positive),
or JZERO i (when the accumulator contains 0), in which case the location
counter is set to i. The effect of each instruction is the same as the corre-
sponding RAM instruction.

The time complexity of a RASP program can be defined in much the same
manner as that of a RAM program. We can use either the uniform cost cri-
terion or the logarithmic cost. In the latter case, however. we must charge
not only for evaluating an operand. but also for accessing the instruction itself.
The accessing cost is /((LC) where LC denotes the contents of the location
counter. For example, the cost of executing the instruction ADD =i, stored
in registers j and j + 1, is [(j) + [(c(0)) + {(i).T The cost of the instruction
ADD i, stored in registers jand j+ 1, is [(j) + [(c(0)) + (i) + I(c(i)).

It is interesting to ask what is the difference in complexity between a
RAM program and the corresponding RASP program. The answer is not
surprising. Any input-output mapping that can be performed in time 7T(n)
by one model can be performed in time kT(n) by the other, for some constant
k, whether cost is taken to be uniform or logarithmic. Likewise, the space
used by either model differs by only a constant factor under these two cost
measures.

These relationships are stated formally in the following two theorems.
Both theorems are proved by exhibiting algorithms whereby a RAM can
simulate a RASP, and vice versa.

Theorem 1.1. If costs of instructions are either uniform or logarithmic,
for every RAM program of time complexity T (n) there is a constant &
such that there is an equivalent RASP program of time complexity k7T (n).

Proof. We show how to simulate a RAM program P by a RASP program.
Register 1 of the RASP will be used to store temporarily the contents of the
RAM accumulator. From P we shall construct a RASP program P, which
will occupy the next r — 1 registers of the RASP. The constant r is deter-
mined by the RAM program P. The contents of RAM register i, i = |, will
be stored in RASP register r + i, so all memory references in the RASP pro-
gram are r more than the corresponding references in the RAM program.

Each RAM instruction in P not involving indirect addressing is directly
encoded into the identical RASP instruction (with memory references appro-
priately incremented). Each RAM instruction in P involving indirect address-
ing is mapped into a sequence of six RASP instructions that simulates the
indirect addressing via instruction modification.

+ We could also charge for reading register j + 1. but this cost cannot differ greatly
from (/). Throughout this chapter we are not concerned with constant factors. but
rather with the growth rate of functions. Thus /(j) +/(j+ 1) is “‘approximately”
1(j). that is, within a factor of 3 at most.
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Register Contents ‘ Meaning
o 1l sToRE 1
:82 ,,*:'I.} LOAD r+i
[ R
P i} STORE 111
ol :} LOAD |
: i? f} SUB b where b is the contents

of RAM register i
Fig. 1.13. Simulation of SUB *i by RASP.

An example should suffice to illustrate the simulation of indirect address-
ing. To simulate the RAM instruction SUB #/, where / is a positive integer.
we shall compile a sequence of RASP instructions that

1. temporarily stores the contents of the accumulator in register 1.

2. loads the contents of register  + i into the accumulator (register » -+ i/ of
the RASP corresponds to register i of the RAM),

3. adds r to the accumulator,

4. stores the number calculated by step 3 into the address field of a SUB
instruction,

S. restores the accumulator from the temporary register 1. and finally

6. uses the SUB instruction created in step 4 to perform the subtraction.

For example. using the encoding for RASP instructions given in Fig.
1.12 and assuming the sequence of RASP instructions begins in register 100.
we would simulate SUB *i with the sequence shown in Fig. 1.13. The offset
r can be determined once the number of instructions in the RASP program P,
is known.

We observe that each RAM instruction requires at most six RASP in-
structions. so under the uniform cost criterion the time complexity of the
RASP program is at most 67(n). (Note that this measure is independent of
the way in which the *‘size™ of the input is determined.)

Under the logarithmic cost criterion. we observe that each RAM instruc-
tion / in P is simulated by a sequence S of either one or six RASP instructions
in P.. We can show that there is a constant & dependent on P such that the
cost of the instructions in S is not greater than A times the cost of instruction /.
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RASP register Instruction Cost
Jj STORE 1 [(j) +1(1) + {(c(0))
j+2 LOAD r+i Hj+2)+1r+i0)+1(c(i))
j+4 ADD =r Hj+4)+cli)) +1(r)
j+6 STORE j+ 11 [(j+6)+1(j+11)+(c(i)+r)
j+8 LOAD ] Hj+8)+1(1)+1(c(0))
j+ 10 SUB - Hj+10) +l(c(i) +r) + 1(c(0))

+(c(c(i)))

Fig. 1.14. Cost of RASP instructions.

For example, the RAM instruction SUB *i has cost
M=1(c(0)) + (i) +1(c(i)) +(c(c(i))).

The sequence S that simulates this RAM instruction is shown in Fig. 1.14.
¢(0). ¢(i). and c(c(i)) in Fig. 1.14 refer to the contents of RAM registers.
Since P, occupies the registers 2 through r of the RASP, we have j = r— 11.
Also, I(x+y) = l(x) + I(v), so the cost of § is certainly less than

2001) +4M + 11H(r) < (6+ L1(r))M.

Thus we can conclude that there is a constant k = 6 + 11/(r) such that if P is
of time complexity T (n), then P, is of time complexity at most AT (n). (J

Theorem 1.2. If costs of instructions are either uniform or logarithmic,
for every RASP program of time complexity T(n) there is a constant A
such that there is an equivalent RAM program of time complexity at
most kT (n).

Proof. The RAM program we shall construct to simulate the RASP will use
indirect addressing to decode and simulate RASP instructions stored in the
memory of the RAM. Certain registers of the RAM will have special purposes:

register 1 —used for indirect addressing,
register 2—the RASP’s location counter,
register 3 —storage for the RASP’s accumulator.

Register i of the RASP will be stored in register i + 3 of the RAM fori = 1.

The RAM begins with the finite-length RASP program loaded in its mem-
ory starting at register 4. Register 2, the location counter, holds 4: registers
1 and 3 hold 0. The RAM program consists of a simulation loop which begins
by reading an instruction of the RASP (with a LOAD *2 RAM instruction),
decoding it and branching to one of 18 sets of instructions. each designed to
handle one type of RASP instruction. On an invalid operation code the RAM,
like the RASP, will halt.

The decoding and branching operations are straightforward: Example 1.2
can serve as a model (although the symbol decoded there was read from the
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S

LOAD 2] Increment the location counter by 1, so it points to the reg-
ADD = IJ ister holding the operand i of the SUB i instruction.
STORE 2

LOAD =2 Bring i to the accumulator, add 3, and store the result in
ADD =3 register 1

STORE 1 '

LOAD 3 Fetch-the contents of the RASP accumulator from register 3.
SUB *1} Subtract the contents of register i + 3 and place the result
STORE 3 back in register 3.

LOAD 2 I . ‘ . . .
ADD =]} ncrement the loca.tlon copnter by 1 again so it now points
STORE 2 to the next RASP instruction.

JUMP a Return to the beginning of the simulation loop (here named

s 99

a’).
Fig. 1.15. Simulation of SUB i by RAM.

input, and here it is read from memory). We shall give an example of the
RAM instructions to simulate RASP instruction 6, i.e., SUB i. This pro-
gram, shown in Fig. 1.15, is invoked when c(c(2)) = 6, that is, the location
counter points to a register holding 6, the code for SUB.

We omit further details of the RAM program construction. It is left as
an exercise to show that under the uniform or logarithmic cost criterion the
time complexity of the RAM program is at most a constant times that of the
RASP.

It follows from Theorems 1.1 and 1.2 that as far as time complexity (and
also space complexity —which is left as an exercise) is concerned, the RAM
and RASP models are equivalent within a constant factor, i.e., their order-of-
magnitude complexities are the same for the same algorithm. Of the two
models, in this text we shall usually use the RAM model, since it is somewhat
simpler.

1.5 ABSTRACTIONS OF THE RAM

The RAM and RASP are more complicated models of computation than are
needed for many situations. Thus we define a number of models which ab-
stract certain features of the RAM and ignore others. The justification for
such models is that the ignored instructions represent at most a constant frac-
tion of the cost of any efficient algorithm for problems to which the model is
applied.

l. Straight-Line Programs

The first model we consider is the straight-line program. For many problems
it is reasonable 10 restrict attention to the class of RAM programs in which



20 MODELS OF COMPUTATION 1.5

branching instructions are used solely to cause a sequence of instructions to
be repeated a number of times proportional to n, the size of the input. In this
case we may “‘unroll” the program for each size n by duplicating the instruc-
tions to be repeated an appropriate number of times. This results in a se-
quence of straight-line (loop-free) programs of presumably increasing length.
one for euch n. '

Example 1.3. Consider the multiplication of two n X n matrices of integers.
It is often reasonable to expect that in a RAM program. the number of times
a loop is executed is independent of the actual entries of the matrices. We
may therefore find it a useful simplification to assume that the only loops per-
mitted are those whose test instructions involve only n, the size of the problem.
For example, the obvious matrix multiplication algorithm has loops which must
be executed exactly n times. requiring branch instructions that compare an
index to n. [

Unrolling a program into a straight line allows us to dispense with branch-
ing instructions. The justification is that in many problems no more than a
constant fraction of the cost of a RAM program is devoted to branch instruc-
tions controlling loops. Likewise, it may often be assumed that input state-
ments form only a constant fraction of the cost of the program, and we elim-
inate them by assuming the finite set of inputs needed for a particular n to be
in memory at the start of the program. The effect of indirect addressing can
be determined when # is fixed, provided the registers used for indirection con-
tain values depending only on n, not on the values of the input variables. We
therefore assume that our straight-line programs have no indirect addressing.

In addition, since each straight-line program can reference only a finite
number of memory registers, it is convenient to name the registers used by
the program. Thus registers are referred to by symbolic addresses (symbols
or strings of letters) rather than integer numbers.

Having eliminated the need for READ, JUMP, JGTZ, and JZERO, we
are left with the LOAD, STORE. WRITE, HALT, and arithmetic operations
from the RAM repertoire. We don’t need HALT, since the end of the pro-
gram must indicate the halt. We can dispense with WRITE by designating
certain symbolic addresses to be output variubles; the output of the program
is the value held by these variables upon termination.

Finally, we can combine LOAD and STORE into the arithmetic opera-
tions by replacing sequences such as

LOAD u«
ADD b
STORE ¢
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by ¢ < a + b. The entire repertoire of straight-line program instructions is:
X y+z
X<<—y—z

< ylz
X <1

Z(—y*-,-

where x, y, and z are symbolic addresses (or variables) and i is a constant. It
is easy to see that any sequence of LOAD, STORE, and arithmetic operations
on the accumulator can be replaced by a sequence of the five instructions
above.

Associated with a straight-line program are two designated sets of vari-
ables, the inputs and outputs. The function computed by the straight-line
program is the set of values of the output variables (in designated order) ex-
pressed in terms of the values of its input variables.

Example 1.4. Consider evaluating the polynomial

p(x) = anx" -+ an_lxn—l + -4+ a,x + dgy.

The input variables are the coefficients ay, a;, . . . , a, and the indetermi-
nate x. The output variable is p.- Horner’s rule evaluates p(x) as

1. ax+ qq for n=1, -

2. (aox + a))x + aq for n=2,

3. ((agx+ ax)x + a;)x + aq for n=3.

The straight-line programs of Fig. 1.16 correspond to these expressions.
Horner’s rule for arbitrary n should now be clear. For each » we have a
straight-line program of 2n steps evaluating a general nth-degree polynomial.
In Chapter 12 we show that » multiplications and » additions are necessary
to evaluate an arbitrary nth-degree polynomial given the coefficients as input,
Thus Horner’s rule is optimal under the straight-line program model. ]

n=1 n=72 n=3
t<—a *x < a, *x <~ uaz* Xx
p <1+ a, < t+a t<—t+a,
1< 1 *X 1< *Xx
p<t+a r<—t+a,

1<t *X
p <1+

Fig. 1.16. Straight-line programs correspond-
ing to Horner's rule.
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Under the straight-line program model of computation. the time com-
plexity of a sequence of programs is the number of steps in the nth program.
as a function of n. For example. Horner's rule yields a sequence of time
complexity 2n. Note that measuring time complexity is the same as measur-
ing the number of arithmetic operations. The space complexity of a sequence
of programs is the number of variables mentioned. again as a function of .
The programs of Example 1.4 have space complexity n + 4.

Definition. When the straight-line program model is intended. we say a
problem is of time or space complexity O ,(f(n)) if there is a sequence of
programs of time or space complexity at most ¢f(n) for some constant c.
(The notation O (f(n)) stands for “‘on the order of f(n) steps using the
straight-line program model.” The subscript A stands for ““arithmetic,”
which is the chief characteristic of straight-line code.) Thus polynomial
evaluation is of time complexity O (n) and space complexity O ,(n),
as well.

1l. Bitwise Computations

The straight-line program model is clearly based on the uniform cost function.
As we have mentioned. this cost is appropriate under the assumption that all
computed quantities are of “‘reasonable” size. There is a simple modifica-
tion of the straight-line program model which reflects the logarithmic cost
function. This model. which we call bitwise computation, is essentially the
same as straight-line code, except that:

1. All variables are assumed to have the values O or 1. i.e., they are bits.
2. The operations used are logical rather than arithmetic.i We use A for
and, Vv for or, @ for exclusive or, and — for not.

Under the bitwise model, arithmetic operations on integers i and j take
at least /(i) + i{(j) steps, reflecting the logarithmic cost of operands. In fact,
multiplication and division by the best algorithms known require more than
[(i) + l(j) steps to multiply or divide / by j.

We use Oy to indicate order of magnitude under the bitwise computa-
tion model. The bitwise model is useful for talking about basic operations,
such as the arithmetic ones, which are primitive in other models. For ex-
ampie. under the straight-line program model, multiplication of two n-bit in-
tegers can be done in O ,(1) step whereas under the bitwise model the best re-
sult known is Oy(n log n loglog n) steps.

Another application of the bitwise model is to logic circuits. Straight-
line programs with binary inputs and operations have a one-to-one corre-
spondence with combinational logic circuits computing a set of Boolean func-
tions. The number of steps in the program is the number of logic elements in
the circuit.

+ Thus the instruction set of our RAM. must include these operations.
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a, b. d, b,

Co < a0 ® by
U< ay A by A ®
v<u ®a, X

c, ~v®b,

w<a, v b,

X+~UAW

y<«a, A b

C, «XVYy Cs o o

(a) (b)

Fig. 1.17 (a) Bitwise addition program: (b) equivalent logical circuit.

Example 1.5. Figure 1.17(a) contains a program to add two 2-bit numbers
la,a,] and [b,b,]. The output variables are c., c,. and ¢, such that [a,a,] +
[b:byT= [cacico]. The straight-line program in Fig. 1.17(a) computes:

C0=(lo®bo,
1= ((ag N by) & a,) D b,.
o= ((ay N by) N (a, vV b)) V (a, N b)).

Figure 1.17(b) shows the corresponding logical circuit. We leave it as an
exercise to show that addition of two n-bit numbers can be performed in
Og(n) steps. O

Ill. Bit Vector Operations

Instead of restricting the value of a variable to be 0 or 1. we might go in the
opposite direction and allow variables to assume any vector of bits as a value.
Actually, bit vectors of fixed length correspond to integers in an obvious way.
SO we have not taken substantial liberties beyond what was done in the RAM
model. i.e.. we still assume unbounded size for registers when convenient.
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However, in those few algorithms where the bit vector model is used. it
will be seen that the length of the vectors used is considerably above the num-
ber of bits required to represent the size of the problem. The magnitude of
most integers used in the algorithm will be of the same order as the size of
the problem. For example, dealing with path problems in a 100-vertex graph,
we might use bit vectors of length 100 to indicate whether there was a path
from a given vertex v to each of the vertices: i.e., the ith position in the vector
for vertex v is | if and only if there is a path from v to v;. In the same prob-
lem we might also use integers (for counting and indexing. for example) and
they would likely be of size on the order of 100. Thus 7 bits would be re-
quired for integers, while 100 bits would be needed for the vectors.

The comparison might not be all that lopsided, however, since most com-
puters do logical operations on full-word bit vectors in one instruction cycle.
Thus bit vectors of length 100 could be manipulated in three or four steps, in
comparison to one step for integers. Nevertheless, we must take cum grano
salis the results on time and space complexity of algorithms using the bit
vector model, as the problem size at which the model becomes unrealistic is
much smaller than for the RAM and straight-line code models. We use Ogy
to denote order of magnitude using the bit vector model.

IV. Decision Trees

We have considered three abstractions of the RAM that ignored branch in-
structions and that considered only the program steps which involve calcula-
tion. There are certain problems where it is realistic to consider the number
of branch instructions executed as the primary measure of complexity. In
the case of sorting, for example, the outputs-are identical to the inputs except
for order. It thus becomes reasonable to consider a model in which all steps
are two-way branches based on a comparison between two quantities.

The usual representation for a program of branches is a binary treef called
a decision tree. Each interior vertex represents a decision. The test repre-
sented by the root is made first, and ““control’” then passes to one of its sons,
depending on the outcome. In general, control continues to pass from a ver-
tex to one of its sons, the choice in each case depending on the outcome of the
test at the vertex, until a leaf is reached. The desired output is available at
the leaf reached.

Example 1.6. Figure 1.18 illustrates a decision tree for a program that sorts
three numbers «, b, and ¢. Tests are indicated by the circled comparisons
at the vertices: control moves to the left if the answer to the test is “‘yes,”
and to the right if “no.” O

+ See Section 2.4 for definitions concerning trees.
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Order is
h<a-lcC

Order is
a~lblc

Order is Order is Order is Order is
alc<hb c<a<h b<c<a c<b<a

Fig. 1.18 A decision tree.

The time ¢omplexity of a decision tree is the height of the tree, as a func-
tion of the size of the problem. Normally we wish to measure the maximum
number of comparisons which must be made to find our way from the root to
aleaf. We use O¢ for order of magnitude under the decision tree (comparison)
model. Note that the total number of vertices in the tree may greatly exceed
its height. For example, a decision tree to sort » numbers must have at least
n! leaves, although a tree of height about 1 log n suffices.

1.6 A PRIMITIVE MODEL OF COMPUTATION: THE TURING MACHINE

To prove that a particular function requires a certain minimum amount of
time, we need a model which is as general as. but more primitive than. the
models we. have seen. The instruction repertoire must be as limited as pos-
sible. yet the model must be able not only to compute anything the RAM can
compute, but to do so ‘“‘almost’ as fast. The definition of ““almost™ that we
shall use is “‘polynomially related.”

Definition. We say that functions f,(11) and fi(n) are polvnomially related
if there are polynomials p,(x) and p.(x) such that for all values of n.
Si(n) = pi(fa(n)) and fo(n) < pu(fi(n)).

Example 1.7. The two functions f,(n) = 2n* and fy(11) = n* are polynomially
related: we may let p,(x) = 2x since 21* < 2%, and p.(x) = X' since ni* = (2n%)°.
However. n* and 2" are not polynomially related. since there is no polynomial
p(x) such that p(n®) = 2" for all n. O
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At present. the only range in which we have been able to use general
computational models such as the Turing machine to prove lower bounds on
computational complexity is the “higher range.” For example, in Chapter 11
we show that certain problems require exponential time and space. (f(n) is
an exponential function if there exist constants ¢, > 0, &, > |, ¢, > 0, and
k, > | such that ¢,A¥ = f(n) = c,k% for all but a finite number of values of 1n.)
In the exponential range, polynomially related functions are essentially the
same. since any function which is polynomially related to an exponential
function is itself an exponential function.

Thus there is motivation for us to use a primitive model on which the
time complexity of problems is polynomially related to their complexity on the
RAM model. In particular, the model we use—the multitape Turing ma-
chine — may require ([f(»)]*) timef to do what a RAM, under the logarithmic
cost function. can do in time f(#x), but no more. Thus time complexity on the
RAM and Turing machine models will be seen to be polynomially related.

Definition. A multitape Turing machine (TM) is pictured in Fig. 1.19.
It consists of some number A& of tapes, which are infinite to the right.
Each tape is marked off into cells, each of which holds one of a finite
number of tape svinbols. One cell on each tape is scanned by a rape head,
which can read and write. Operation of the Turing machine is deter-
mined by a primitive program called a finite control. The finite control
is always in one of a finite number of stares, which can be regarded as
positions in a program.

One computational step of a Turing machine consists of the tollowing.
In accordance with the current state of the finite control and the tape sym-
bols which are under (scanned by) each of the tape heads, the Turing machine
may do any or all of these operations:

1. Change the state of the finite control.

2. Print new tape symbols over the current symbols in any or all of the
cells under tape heads.

3. Move any or all of the tape heads. independently, one cell left (L) or
right (R) or keep them stationary (S).

Formally, we denote a A-tape Turing machine by the seven-tuple

(Q.T.1.5.b.qy. qr)-

* Actually. a tighter bound of O([f1n) log fin) loglog f(n)]*) may be shown. but since
we are not concerned with polynomial factors here. the tourth-power result will do
(see Section 7.3).
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Finite state control

T =0

 tapes 4 l;l ]

|
~ v
[ 1]

Fig. 1.19 A muititape Turing machine.

where:

. Q is the set of states.

T is the set of tape svmbols.

[ is the set of input symbols; I C T.

b.in T — [. is the blank.

qo is the initial state.

q; is the final (or accepting) state.

8, the next-move function, maps a subsetof Q X T*to Q X (T X {L,R,S}H*.
That is. for some (A + 1)-tuples consisting of a state and A tape sym-
bols, it gives a new state and A pairs, each pair consisting of a new tape
symbol and a direction for the tape head. Suppose 6(q, a;, ay. . . ., a) =
(q', (ay, dy), (as, ds), . . ., (a;. d))), and the Turing machine is in state g
with the ith tape head scanning tape symbol ¢; for 1 = i< k. Then in
one move the Turing machine enters state q'. changes symbol ¢; to «;,
and moves the ith tape head in the direction d; for 1 =i < k.

'\I.O\EJt:l}-wIJ—-

A Turing machine can be made to recognize a language as follows. The
tape symbols of the Turing machine include the alphabet of the language.
called the input symbols, a special symbol blank, denoted b. and perhaps
other symbols. Initially, the first tape holds a string of input symbols. one
symbol per cell starting with the leftmost cell. All cells to the right of the
cells containing the input string are blank. All other tapes are completely
blank. The string of input symbols is accepted if and only if the Turing ma-
chine. started in the designated initial state. with all tape heads at the left
ends of their tapes. makes a sequence of moves in which it eventually enters
the accepting state. The language accepred by the Turing machine is the set
of strings of input symbols so accepted.
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Y g,

(c)

Fig. 1.20 Turing machine processing 01110.

Example 1.8. The two-tape Turing machine in Fig. 1.20 recognizes palin-
dromesi on the alphabet {0, 1} as follows.

1.

[ ]

The first cell on tape 2 is marked with a special symbol X. and the input
is copied from tape I. where it appears initially (see Fig. 1.20a), onto
tape 2 (see Fig. 1.20b).

Then the tape head on tape 2 is moved to the X (Fig. 1.20c).
Repeatedly. the head of tape 2 is moved right one cell and the head
of tape | left one cell. comparing the respective symbols. If all symbols
match. the input is a palindrome and the Turing machine enters the ac-
cepting state ¢s. Otherwise. the Turing machine will at some point have
no legal move to make: it will halt without accepting.

The next-move function of the Turing machine is given by the table of

Fig. 1.21. 1

T A string which reads the same backwards as forwards. ¢.g.. 0100010, is called a
palindrome.
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(New symbol.

Current Symbol on: head move) New
Jate  |Tape | Tape 2 |Tape | Tape 2| state Comments
4o 0 b 0.S X.R q, If input is nonempty, print X on
] b 1.S X.R ¢ tupe 2 and move head right: go
b b b.S b.S ¢, | to state ¢,. Otherwise. go to
state (. =
o 0 b 0.R 0.R ¢ Stay in state ¢, copying tape |1
1 b 1.R 1.R ¢, |onto tape 2 until b is reached
b b b.S b.L ¢. |ontape |I. Then go to state ¢..
s b 0 b.S 0.L , | Keep tape I's head fixed and
b 1 b.S I,L ¢. |move tape 2’s left until X is
b X b.L X.R g, |reached. Then go to state g,.
s 0 0 0,S 0.R ¢g; | Control alternates between
1 1 1.S 1,R gs |states ¢, and ¢,. In ¢; com-
pare the symbols on the two
q, 0 0 0.L 0.S ¢, |tapes. move tape 2's head right.
0 1 0.L 1.5 ¢+ |and goto g,. In g, goto g;
1 0 ILL | 0S ¢. |and accept if head has reached
] 1 I,.L 1.S g, |bon tape 2. Otherwise move
0 b 0.5 b.S gs; |tape I's head left and go back
1 b 1,S b,S g; |to g;. The alternation g,. ¢,
' prevents the input head from
falling off the left end of
tape |I.
4qs Accept

Fig. 1.21. Next-move function for Turing machine recognizing palindromes.

The activity of a Turing machine can be described formally by means
of “instantaneous descriptions.” An instantancous description (ID) of a
k-tape Turing machine M is a k-tuple (. . . . . . a;) Where each a; is a string
of the form xgv such that xv is the string on the ith tape of M (with trailing
blanks omitted) and g is the current state of M. The symbol immediately to
the right of the ith g is the symbol being scanned on the ith tape.

If instantaneous description D, becomes instantaneous description D,

after one move of the Turing machine M. then we write D, hDg (read }—as
Tgoes to”). If D, [T; D, 'm © - ; Dy for some n = 2. then we write D, E, D,.
If either D= D' or D E; D', then we write D E, D'.
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The k-tape Turing machine M =(Q.T.[l.38.b. qy. q) accepts string
dauds -+ - a,, where the a's are in 1. if (goa,ds © * * dye o. Go- -+ - - o) [;7
(¢t). s, . . . .ay)forsome a;'s with ¢¢in them.

Example 1.9. The sequence of instantaneous descriptions entered by the
Turing machine of Fig. 1.21 when presented with the input 010 is shown in
Fig. 1.22. Since ¢; is the final state. the Turing machine accepts 010. OJ

In addition to its natural interpretation as a language acceptor. a Turing
machine can be regarded as a device that computes a function f. The argu-
ments of the function are encoded on the input tape as a string .x with a special
marker such as # separating the arguments. If the Turing machine halts with
an integer v (the value of the function) written on a tape designated as the
output tape, we say f(x) =y. Thus the process of computing a function is
little different from that of accepting a language.

The time complexity T(n) of a Turing machine M is the maximum num-
ber of moves made by M in processing any input of length n, taken over all
inputs of length n. If for some input of length n the Turing machine does not
halt, then T(n) is undefined for that value of n. The space complexity S(n)
of a Turing machine is the maximum distance from the left end of a tape which

(90010, go) |- (9,010, Xq,)

- (04,10, X0g,)

I (014,0, X01gq,)
I- (010g,, X010q,)
|- (010, X014,0)
I (0104, X0g,10)
|- (010, Xq:010)
- (010g,, ¢.X010)
I (014,0. X¢,010)
I (014,0, X0g,10)
I (0g,10. X0g,10)
|- (0g,10. X01¢,0)
F (4,010, X014,0)
F (4,010. X010g,)
.i_ (¢;010. X010g;)

Fig. 1.22. Sequence of Turing machine ID’s.
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any tape head travels in processing any input of length 2. 1f a tape head moves
indefinitely to the right. then S(n) is undefined. We use Oy for order of mag-
nitude under the Turing machine model.

Example 1.10. The time complexity of the Turing machine of Fig. 1.21 is
Tin) = 4n + 3. and its space complexity is S(n) = n + 2, as can be checked
by examining the case when the input actually is a palindrome. (J

1.7 RELATIONSHIP BETWEEN THE TURING MACHINE AND RAM MODELS

The principal application of the Turing machine (TM) model is in determining
lower bounds on the space or time necessary to solve a given problem. For
the most part, we can determine lower bounds only to within a polynomially
related function. Deriving tighter bounds involves more specific detaiis of a
particular model. Fortunately, computations on a RAM or RASP are poly-
nomially related to computations on a TM.

Consider the relationship between the RAM and TM models. Clearly
a RAM can simulate a A-tape TM by holding one cell of a TM tape in each of
its registers. In particular, the ith cell of the jth tape can be stored in register
ki +j+ c. where ¢ is a constant designed to allow the RAM some ‘“‘scratch
space.” Included in the scratch space are & registers to hold the positions of
the & heads of the TM. Cells of the TM's tape can be read by the RAM by
using indirect addressing through the registers holding the tape head positions.

Suppose the TM is of time complexity T(n) = n. Then the RAM can read
its input, store it in the registers representing the first tape, and simulate the
TM in O(T(n)) time if the uniform cost function is used or in O(T(n) log T(n))
time if the logarithmic cost function is used. In either case, the time on the
RAM is bounded above by a polynomial function of the time on the TM. since
any O(T(n) log T(n)) functiori is certainly O(T2(n)).

A converse result holds only under the logarithmic cost for RAM's.
Under the uniform cost an n-step RAM program. without input, can compute
numbers as high as 22", which requires 2" TM cells just to store and read.
Thus under the uniform cost no polynomial relationship between RAM's
and TM’s is apparent (Exercise 1.19).

Although we prefer the uniform cost for its simplicity when analyzing
ulgorithms. we must reject it when attempting to prove lower bounds on time
complexity. The RAM with uniform cost is quite reasonable when numbers
do not grow out of proportion with the size of the problem. But. as we said
previously, with the RAM model the size of numbers is “swept under the
rug.” and rarely can useful lower bounds be obtained. For the logarithmic
cost, however. we have the following theorem.

Theorem 1.3. Let L be a language that is accepted by a RAM program
of time complexity T(n) under the logarithmic cost criterion. If the RAM
program uses no multiplications or divisions. then L is of time complexity
at most O(T#(n)) on a multitape Turing machine.
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##i,i#t',##L.#('..##~~~ik#q.##b--

Fig. 1.23. TM representation of RAM.

Proof. We represent all the RAM registers not holding 0 as shown in Fig. 1.23.
The tape consists of a sequence of pairs (i}, ¢;) written in binary with no leading
0's and separated by marker symbols. For each j, ¢; is the contents of RAM
register i;. The contents of the RAM accumulator is stored in binary on a
second tape. and a third tape is used for scratch memory. Two other tapes
serve to hold the input and output of the RAM. Each step of the RAM pro-
gram is represented by a finite set of states of the TM. We shall not describe
the simulation of an arbitrary RAM instruction, but shall consider only the
instructions ADD #20 and STORE 30, which should make the ideas .clear.
For ADD *20, we can design the TM to do the following:

1. Search tape | for an entry for RAM register 20, i.e., a sequence
##10100#. If found, place the integer following. which will be the con-
tents of register 20, on tape 3. If not found, then halt. The contents of
register 20 is 0 and thus the indirect addressing cannot be done.

Look on tape | for an entry for the RAM register whose number is stored
on tape 3. If found. copy the contents of that register onto tape 3. If
not found, place O there.

3. Add the number placed on tape 3 in step 2 to the contents of the accumu-

lator, which is held on tape 2.

19

To simulate the instruction STORE 30, we can design the TM to do the
following:

1. Search for an entry for RAM register 30, i,e., ##11110#.

2. If found. copy everything to the right of ##11110#, except for the in-
teger immediately following (the old contents of register 30), onto tape 3.
Then copy the contents of the accumulator (tape 2) immediately to the
right of ##11110# and follow it by the string copied onto tape 3.

3. If no entry for register 30 was found on tape 1, instead go to the leftmost
blank. print 11110#, followed by the contents of the accumulator, fol-
lowed by ##.

With a little thought. it should be evident that the TM can be designed to
simulate the RAM faithtully. We must show that a RAM computation of
logarithmic cost A requires at most O(A®) steps of the Turing machine. We
begin by observing that a register will not appear on tape | unless its current
value was stored into the register at some previous time. The cost of storing
¢; into register i; is l(¢;) + {(i;). which is, to within a constant, the length of the
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representation ###c##. We conclude that the length of the nonblank por-
ton of tape 1 is O(k).

The simulation of any instruction other than a STORE is on the order of
the length of tape 1. that is. O(k). since the dominant cost is a search of the
tape.  Similarly. the cost of a STORE is no more than the cost of searching
tape | plus the cost of copying it. both O(k). Hence one RAM instruction
texcept for multiply and divide) can be simulated in at most O(k) steps of
the TM. Since a RAM instruction costs at least one time unit under the loga-
rithmic cost criterion. the total time spent by the TM 1s O(A®). as was to be
proved. OJ

If a RAM program employs multiply and divide instructions. then we can
write subroutines of the TM to implement these instructions by means of
additions and subtractions. We leave it to the reader to show that the ioga-
rithmic cost of the subroutines is no greater than the square of the logarithmic
cost of the instructions they simulate. It is thus not hard to prove the following
theorem.

Theorem 1.4. The RAM and RASP under logarithmic cost and the multi-
tape Turing machine are all polynomially related models.

Proof. Use Theorems 1.1, 1.2, and 1.3 and your analysis of multiplication
and division subroutines. 3 -

An analogous result holds for space complexity. although the result
appears less interesting.

1.8 PIDGIN ALGOL—A HIGH-LEVEL LANGUAGE

Although our basic measures of complexity are in terms of operations on a
RAM. RASP, or Turing machine. we do not generally want to describe algo-
rithms in terms of such primitive machines. nor is it necessary. In order to
describe algorithms more clearly we shall use a high-level language called
Pidgin ALGOL.

A Pidgin ALGOL program can be translated into a RAM or RASP pro-
gram in a straightforward manner. Indeed this would be precisely the role
of a Pidgin ALGOL compiler. We shall not. however. concern ourselves with
the details of translating Pidgin ALGOL into RAM or RASP code. For our
purposes. it is necessary to consider only the time and space necessary (o
¢xecute the code corresponding to a Pidgin ALGOL statement.

Pidgin ALGOL is unlike any conventional programming language in
Fhul it allows the use of any type of mathematical statement as long as its mean-
ing is clear and the translation into RAM or RASP code is evident. Similarly.
fhc language does not have a fixed set of data types. Variables can represent
Integers. strings. and arrays. Additional data types such as sets. graphs. lists.
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and queues can be introduced as needed. Formal declarations of data types
are avoided as much as possible. The data type of a variable and its scopet
should be evident either from its name or from its context.

Pidgin ALGOL uses traditional mathematical and programming language
constructs such as expressions. conditions. statements. and procedures. In-
formal descriptions of some of these constructs are given below. No attempt
is made to give a precise definition. as that would be far beyond the scope of
the book. It should be recognized that one can easily write programs whose
meaning depends on details not covered here, but one should refrain from doing
so. and we have (hopefully) done so in this book.

A Pidgin ALGOL program is a statement of one of the following types.

variable < expression
if condition then statement else statement}
3a. while condition do statement
b. repeat statement until condition
for variable < initial-value step step-size§ until final-value do statement
label: statement
goto label
begin
statement:
statement:

19 —

Nownk

statement;
statement
end
8a. procedure name (list of parameters): statement
b. return expression
c. procedure-name (arguments)
9a. read variable
b. write expression
10. comment comment
il. any other miscellaneous statement

T The scope of a variable is the environment in which it has a meaning. For example,
the scope of an index of a summation is defined only within the summation and has no
meaning outside the summation.

t “else statement” is optional. This option leads to the usual ‘‘dangling else” ambi-
guity. We take the traditional way out and assume else to be matched with the closest
unmatched then.

§ *'step step-size” is optional if step-size is 1.
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We shall give a brief synopsis of each of these statement types.
1. The assignment statement

variable < expression

causes the expression to the right of < to be evaluated and the resulting value
10 be assigned to the variable on the left. The time complexity of the assign-
ment statement is the time taken to evaluate the expression and to assign the
value to the variable. If the value of the expression is not a basic data type.
such as an integer. one may in some cases reduce the cost by means of pointers.
For example, the assignment 4 < B where A4 and B are n X n matrices would
normally require O(n?) time. However, if B is no longer used. then the time
can be made finite and independent of n by simply renaming the array.

5. In the if statement
if condition then statement else statement

the condition following the if can be any expression that has a value true or
false. If the condition has the value true, the statement following then is to
be executed. Otherwise, the statement following else (if present) is to be exe-
cuted. The cost of the if statement is the sum of the costs required to evaluate
and test the expression plus the cost of the statement following then or the
cost of the statement following else, whichever is actually executed.

3. The purpose of the while statement
while condition do statement
and the repeat statement
repeat statement until condition

is to create a loop. In the while statement the condition following while is
evaluated. If the condition is true, the statement after the do is executed.
This process is repeated until the condition becomes false. If the condition
is originally true, then eventually an execution of the statement must cause
the condition to become false if the execution of the while statement is to ter-
minate. The cost of the while statement is the sum of the costs of evaluating
the condition as many times as it is evaluated plus the sum of the costs of exe-
cuting the statement as many times as it is executed.

The repeat statement is similar except that the statement following repeat
is executed before the condition is evaluated.

4. In the for statement
for variable < initial-value step step-size until final-value do statement

initial-value. step-size. and final-value are all expressions. In the case where
step-size is positive the variable (called the index) is set equal to the value of



36 MODELS OF COMPUTATION 1.

the initial-value expression. If this value exceeds the final-value. then execu
tion terminates. Otherwise the statement tollowing do is executed. the valu
of the variable is incremented by step-size and compared with the final-value
The process is repeated until the value of the variable exceeds the final-value
The case where the step-size is negative is similar. but termination occur:
when the value of the variable is less than the final-value. The cost of the
for statement should be obvious in light of the preceding analysis of the whil«
statement.

The above description completely ignores such details as when the ex-
pressions for initial-value. step-size, and final-value are evaluated. It is pos-
sible that the execution of the statement following do modifies the value of
the expression step-size. in which case evaluating the expression for step-size
every time the variable is incremented has an effect different from evaluating
step-size once and for all. Similarly. evaluating step-size can affect the value
of final-value. and a change in sign of step-size changes the test for termination.
We resolve these problems by not writing programs where such phenomena
would make the meaning unclear.

5. Any statement can be made into a labeled statement by prefixing it with
a label followed by a colon. The primary purpose of the label is to establish
a target for a goto statement. There is no cost associated with the label.

6. The goto statement
goto label

causes the statement with the given label to be executed next. The statement
so labeled is not allowed to be inside a block-statement (7) unless the goto
statement is inside the same block-statement. The cost of the goto statement
is one. goto statements should be used sparingly, since they generally make
programs difficult to understand. The primary use of goto statements is to
break out of while statements.

7. A sequence of statements separated by semicolons and nested between
the keywords begin and end is a statement which is called a block. Since a
block is a statement. it can be used wherever a statement can be used. Nor-
mally, a program will be a block. The cost of a block is the sum of the costs
of the statements appearing within the block.

8. Procedures. In Pidgin ALGOL procedures can be defined and subse-
quently invoked. Procedures are defined by the procedure-definition state-
ment which is of the form:

procedure name (list of parameters): statement

The list of parameters is a sequence of dummy variables called formal param-
cters.  For example. the following statement defines a function procedure
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named MIN.
procedure MIN(x. v):
if v > v then return v else return x

The arguments x and y are formal parameters.

Procedures are used in one of two ways. One way is as a function. After
a function procedure has been defined. it can be invoked in an expression by
using its name with the desired arguments. In this case the last statement
executed in the procedure must be a return statement 8(b). The return state-
ment causes the expression following the keyword return to be evaluated and
execution of the procedure to terminate. The value of the function is the value
of this expression. For example.

A< MINC+3.7)

causes A to receive the value S. The expressions 2 + 3 and 7 are called the
actual parameters of this procedure invocation.

The second method of using a procedure is to call it by means of the
procedure-calling statement 8(c). This statement is merely the name of the
procedure followed by a list of actual parameters. The procedure-calling
statement can (and usually does) modify the data of the calling program. A
procedure called this way does not need a return statement in its definition.
Completion of execution of the’last statement in the procedure completes the
execution of the procedure-calling statement. For example, the following
statement defines a procedure named INTERCHANGE. '

procedure INTERCHANGE(x. y):

begin
1
Xy
y <1

end

To invoke this procedure we could write a procedure-calling statement such as
INTERCHANGEMA[i]. A[jD

There are two methods by which a procedure can communicate with other
procedures. One way is by global variables. We assume that global variables
are implicitly declared in some universal environment. Within this environ-
ment is a subenvironment in which procedures are defined.

The other method of communicating with procedures is by means of the
parameters. ALGOL 60 uses call-by-value and call-by-name. In call-by-
value the formal parameters of a procedure are treated as local variables which
are initialized to the values of the actual parameters. In call-by-name formal
parameters serve as place holders in the program. actual parameters being
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suh\'tituted for every occurrence of the corresponding formal parameters. For
simplicity we depart from ALGOL 60 and use call-by-reference. In call-by-
reference parameters are passed by means of pointers to the actual parameters.
If an actual parameter is an expression (possibly a constant). then the corre-
sponding formal parameter is treated as a local variable initialized to the value
of the expression. Thus the cost of a function or procedure-call in a RAM or
RASP implementation is the sum of the costs of executing the statements in
the definition of the procedure. The cost and implementation of a procedure
that calls other procedures. possibly itself. is discussed in Chapter 2.

9. The read statement and write statement have the obvious meaning. The

read statement has a cost of one. The write statement has a cost of one plus
the cost of evaluating the expression following the keyword write.

10. The comment statement allows insertion of remarks to aid in the under-
standing of the program and has zero cost.

11. In addition to the conventional programming language statements we in-
clude under “"miscellaneous’ any statement which makes an algorithm more
understandable than an equivalent sequence of programming language state-
ments. Such statements are used when the details of implementation are either
irrelevant or obvious, or when a higher level of description is desirable. Some
examples of commonly used miscellaneous statements are:

a) let a be the smallest element of set S

b) mark element « as being ‘“‘old™T

c) without loss of generality (wlg) assume that . . . otherwise . . . in statement
For example.

wlg assume a < b otherwise interchange ¢ and d in statement

means that if « = b the following statement is to be executed as written.
If « > b, a duplicate of the statement with the roles of ¢ and d inter-
changed is to be executed.

Implementation of these statements in terms of conventional programming
language statements or in terms of RAM code is straightforward but tedious.
Assignment of a cost to statements of this nature depends on the context in
which the statement is found. Further examples of statements of this nature
will be found throughout the Pidgin ALGOL programs in this book.

Since variables will usually not be declared. we should state some con-
ventions concerning the scope of variables. In a given program or procedure
we do not use the same name for two different variables. Thus the scope of
a variable can usually be taken to be the entire procedure or program in which

+ By this we suppose there is an array STATUS. such that STATUS[«] is 1 if a is
=old” and O if « is “new.”
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it occurs.t One important exception occurs when there is a common data
pase on which several procedures operate. In this case the variables of the
common data base are assumed to be global and the variables used by the
procedure for temporary storage in manipulating the data base are assumed
10 be local to the procedure. Whenever confusion can arise concerning the
scope of a variable. an explicit declaration will be made.

EXERCISES

1.1

1.3

1.4

*1.5

“1.6

“1.7

**1.8

Prove that g(n) is O(f(n)) if (a) f(n) = €. for some € > 0 and for all but some
finite set of n and (b) there exist constants ¢, > 0 and ¢, > 0 such that g(n) =
¢, f(n) + ¢, for almost all n = 0.

Write f(n) < g(n) if there exists a positive constant ¢ such that f(n) < cg(n) for
all n. Show that f; < g, and f; < g, imply f, +f» < g, + g&. What other prop-
erties are enjoyed by the relation < ?

Give RAM.'-RASP, and Pidgin ALGOL programs to do the following:

a) Compute n! given input n.

b) Read n positive integers followed by an endmarker (0) and then print the n
numbers in sorted order.

c) Accept all inputs of the form 172*°Q.

Analyze the time and space'complexities of your answers to Exercise 1.3 under

(a) the uniform and (b) the logarithmic cost. State your measure of the “‘size”

of the input.

Write a RAM program of uniform-cost time complexity O(log n) to compute n".
Prove that your program is correct.

Show that for each RAM program of time complexity T(n) under the logarithmic
cost function there is an equivalent RAM program of time complexity O(T3(n))
which has no MULT or DIV instructions. [Hinz: Simulate MULT and DIV
by subroutines that use even-numbered registers for scratch storage. For MULT.
show that if i is to be multiplied by j. you can compute each of the /() partial
products and sum them in O(/(j)) steps. each step requiring O(/(i)) time.]

What happens to the computing power of a RAM or RASP if both MULT and
ADD are removed from the instruction repertoire? How is the cost of compu-
tation affected?

Show that any language accepted by a RAM can be accepted by a RAM with-
out indirect addressing. [Hinr: Show that an entire Turing machine tape can
be encoded as a single integer. Thus any TM can be simulated in a finite number
of registers of a RAM.]

¥ There are some unimportant exceptions to this statement. For example. a proce-
dure may have two unnested for statements both with the index i. Strictly speaking.
the scope of the index of a for statement is the for statement itself. and thus the i's
are different variables.



40

1.9

1.10

1.11

1.12

1.13
*1.14

*1.15

1.16

*1.17

1.18

1.19

*1.20

MODELS OF COMPUTATION

Show that under (a) uniform and (b) logarithmic cost. the RAM and RASP are
equivalent in space complexity. to within a constant tactor.

Find a straight-line program that computes the -determinant of a 3 X 3 matrix.
given its nine scalar elements as inputs.

Write a sequence of bit operations to compute the product of two 2-bit integers.

Show that the set of functions computed by any n-statement straight-line pro-
gram with binary inputs and Boolean operators can be implemented by a combi-
national logic circuit with n Boolean circuit elements.

Show that any Boolean function can be computed by a straight-line program.

Suppose an n-vertex graph is represented by a set of bit vectors v;, where the
Jjth component of v; is | if and only if there is an edge from vertex i to vertex j.
Find an Og(n) algorithm to determine the vector p, which has | in position j if
and only if there is a path from 1 to vertex j. The operations you may use are
the bitwise logical operations on bit vectors. arithmetic operations (on variables
which are of “‘integer type’), instructions which set particular bits of particular
vectors to O or 1, and an instruction which assigns j to integer variable « if the
leftmost 1 in vector v is in position j, and sets ¢« =0 if v is all 0's.

Specify a Turing machine which when given two binary integers on tapes 1 and
2 will print their sum on tape 3. You may assume the left ends of the tapes are
marked by a special symbol #.

Give the sequence of configurations entered by the TM of Fig. 1.21 (p. 29)
when presented with input (a) 0010, (b) 01110.

Give a TM which does the following:
a) Prints 0" on tape 2 when started with 0" on tape 1.
b) Accepts inputs of the form 010"

Give a set of TM states and a next-move function to allow a TM to simulate
the RAM instruction LOAD 3 as in the proof of Theorem 1.3. '
Give an O(n) step RAM program which computes 22" given n. What is the
(a) uniform and (b) logarithmic cost of your program?

Define g(m. n) by g(0. n) = n and g(m, n) = 24m=t0 for m > 0. Give a RAM
program to compute g(n. n), given n. How do the uniform and logarithmic costs
of your program compare?

Execute the procedure INTERCHANGE of Section 1.8 with actual parameters
i and A[i] using call-by-name, then using call-by-reference. Are the results
the same?

Research Problem

1.22

Can the O(T*(n)) upper bound on the time required for a Turing machine to
simulate @ RAM. as in Theorem 1.3, be improved?
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BIBLIOGRAPHIC NOTES

The RAM and RASP have received formal treatment in Shepherdson and Sturgis
:1963]. Elgot and Robinson [1964]. and Hartmanis [1971]. Most of the results on
RAM’'s and RASP’s presented here are patterned after Cook and Reckhow [1973].

The Turing machine is due to Turing [1936]. A more detailed exposition of the
concept can be found in Minsky [1967] or Hopcroft and Ullman [1969]. as can the
answer to Exercise [.8. Time complexity of Turing machines was first studied by
Hartmanis and Stearns [1965]. and space complexity by Hartmanis. Lewis. and
Stearns [1965] and Lewis. Stearns. and Hartmanis [1965]. The notion of compu-
tational complexity has received much abstract treatment. beginning with Blum [1967].
Surveys can be found in Hartmanis and Hopcroft [1971] and Borodin [1973a].

Rabin [1972] provides an interesting extension to the decision tree model of
computation.
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The purpose of this chapter is twofold. First. we introduce some basic data
structures that are usetul in designing efficient algorithms for large classes of
problems. Second. we introduce some “programming’ techniques. such as
recursion and dynamic programming. that are common to many ellicient
algorithms. '

In Chapter 1 we considered the basic models of computation. Although
our primary model is the RAM. we do not normally want to describe algo-
rithms in terms of such a basic device. We therefore introduced Pidgin
ALGOL (Section 1.8). But even this language is too primitive unless we
introduce data structures that are more complex than arrays. We begin this
chapter by familiarizing the reader with elementary data structures. such as
lists and stacks, which are frequently used in efficient algorithms. We indi-
cate how these structures can be used to represent sets. graphs. and trees.
The treatment is necessarily brief, and the reader not familiar with list process-
ing should consult one of the more basic references at the end of the chapter
or give special attention to the exercises.

We have also included a section on recursion. One of the important
aspects of recursion is the resulting conceptual simplification of algorithms.
Although the examples in this chapter are too simple to substantiate this claim
fully, the suppression of bookkeeping details by the use of recursion is most
useful in being able to express concisely the more complex algorithms in later
chapters. Recursion by itself does not necessarily lead to more efficient algo-
rithms. However, when it is combined with other techniques such as bal-
ancing, divide-and-conquer, and algebraic simplification. we shall see that it
often yields algorithms that are both efficient and elegant.

2.1 DATA STRUCTURES: LISTS, QUEUES, AND STACKS

We assume that the reader is familiar both with elementary concepts of mathe-
matics such as sets and relations and with basic data types such as integers.
strings. and arrays. In this section we provide a quick review of basic list
operations.

Mathematically. a list is a finite sequence of items drawn from some set
pertinent to the application at hand. Often the description of an algorithm
will involve a list to which items are added and deleted. In particular. we may
want to add or delete an item somewhere in the middle of a list. For this
reason we wish to develop data structures that allow us to implement lists in
which items can be added or deleted at will.

Consider the list

Item !. Item 2. Item 3. Item 4 (2.1)

The simplest implementation of this list is the singly linked structure illus-
trated in Fig. 2.1. Each element in the structure consists of two memory
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ltem p| ltem| L 1 ltem

FIRST —b| tem

v

Fig. 2.1 A linked list.

NAME NEXT

0 - 1
1| Item | 3
2| Item 4 0
3| Item?2 4
4 | Item3 2

Fig. 2.2. Representation of a list with four items.

-

locations. The first contains the item itself,? the second contains a pointer to
the next element. One possible implementation is in terms of two arrays which
in Fig. 2.2 are called NAME and NEXT.t If ELEMENT is an index into the
arrays. then NAME[ELEMENT] is the item stored and NEXT[ELEMENT]
is the index of the next item on the list, provided there is a next item. If ELE-
MENT is the index of the last item on the list, then NEXT[ELEMENT] = 0.

In Fig. 2.2 we have used NEXT[0] as a permanent pointer to the first
element of the list. Note that the order of the items in the array NAME is
not the same as their order on the list. However. Fig. 2.2 is a faithful represen-
tation of Fig. 2.1. since the NEXT array sequences the items as they appear
on the list (2.1).

The following procedure inserts an element into a list. It assumes that
FREE is the index of an unused location in the arrays NAME and NEXT
B e —

¥ If the item is itself a complex structure. then the first location might contain a pointer
10 the item.

* An alternative (and equivalent) view is that there is a “cell” for each element. Each
ccll. has an “address.” which is the first (possibly only) memory register in a block of
feaisters reserved for that element. Within each cell are one or more “fields.” Here
}hc fields are NAME and NEXT. and NAME[ELEMENT] and NEXT{ELEMENT]
4re used 1o refer to the contents of these fields in the cell whose address is ELEMENT.
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i~ obtained by deleting the first cell on the free list.  On deleting an item from
iist 1. the cell is returned to the free list for future use.

This method of storuge management is not the only method in use but is
presented to establish that the operation of adding or deleting items from lists
-an be accomplished in a bounded number of operations once we have deter-
mined where the item is to be inserted or deleted.

Other basic operations on lists are concatenation of two lists to form a
single list and the inverse operation of cutting a list after some element to make
wo lists.  The operation of concatenation can be performed in bounded time
by adding another pointer to the representation of a list. This pointer gives the
index of the last element on the list and obviates the need to search the entire
list to find the last element. The cutting operation can be made bounded if
we are given the index of the element immediately preceding the cut.

Lists can be traversed in both directions by adding another array called
PREVIOUS. The value of PREVIOUS(/] is the location of the item on the
list immediately before the item which is in location /. A list of this nature is
said to be doubly linked. In a doubly linked list we can delete an item or in-
sert an item without being given the location of the previous item.

Often a list is manipulated in a very restricted manner. For example.
items might be added or deleted only at the end of a list. That is. items are
inserted and deleted in a last-inx first-out fashion. In this case the list is re-
ferred to as a stack or pushdown store.

Often a stack is implemented as a single array. For example. the list

[tem 1. [tem 2. Item 3

could be stored in the array NAME as shown in Fig. 2.4. The variable TOP

NAME

0 lItem |

10

11 Item

TOP — 2| ltem

(V3

Fig. 2.4. Implementation of a stack.
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is a pointer to the last item added to the stack. To add (PUSH) a new item
onto the stack. we set TOP to TOP + | and then place the new item in
NAME[TOP]. (Since the array NAME is of finite length /. we should check
that TOP << [/ — | before tryving to insert the new item.) To delete (POP) an
item from the top of the stack. we simply set TOP to TOP — 1. Note that it
is not necessary to physically erase the item deleted from the stack. Anempty
stack is detected by checking to see whether TOP has a value less than zero.
Clearly, the execution time of the operations PUSH. POP. and the test for
emptiness are independent of the number of elements on the stack.

Another special form of list is the gueuwe, a list in which items are always
added to one end (the front) and removed from the other. As with a stack, we
may implement a queue by a single array as shown in Fig. 2.5, which shows
a queue containing the list of items P, Q, R, S, T. Two pointers indicate the
locations of the current front and rear of the queue. To add (ENQUEUE)
a new item to a queue we set FRONT to FRONT + | and store the new item
in NAME[FRONT], as for a stack. To remove (DEQUEUE) an item from

NAME

REAR — P

O

wn

FRONT — T

Fig. 2.5. Single urray implementation of a queue.
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4 queuc.we set REAR to REAR + 1. Note that this technique causes items
1o be accessed on a first-in. first-out basis.

Since the array NAME is of finite length. say /. the pointers FRONT and
REAR will eventually reach the end of the array. If the length of the list
represented by the queue never exceeds /. then we may treat NAME([0]
as though it followed NAME[/ — 1].

ltems stored on a list may themselves be complicated structures. In
manipulating a list of arrays, for example. one does not actually add or delete
arravs. since each addition or deletion would require time proportional to the
size of the array. Instead one adds or deletes pointers to the arrays. Thus
a complex structure can be added or deleted in fiXed time independent of

its size.

2.2 SET REPRESENTATIONS

A common use of a list is to represent a set. With this representation the
amount of memory required to represent a set is proportional to the number
of elements in the set. The amount of time required to perform a set opera-
tion depends on the nature of the operation. For example, suppose 4 and B
are two sets. An operation such as 4 N B requires time at least proportional
to the sum of the sizes of the two sets. since the list representing 4 and the
list representing B must each be scanned at least once.t

The operation A U B likewise requires time at least proportional to the
sum of the set sizes, since we must check for the same element appearing in
both sets and delete one instance of each such element. If 4 and B are dis-
joint, however, we may find A U B in time independent of the size of 4 and
B by simply concatenating the two lists representing 4 and B. The matter of
disjoint set unions is made more complicated if we also require a fast method
of determining whether a given element is in a given set. We discuss this sub-
Jject more fully in Sections 4.6 and 4.7.

An alternative to the list is a bit vector representation of sets. Assume
the universe of discourse U (of which all sets are subsets) has » members.
Linearly order the elements of U. A subset S C U is represented as a vector
vy of n bits. where the ith bit in vg is | if and only if the ith element of U is an’
element of S. We call vg the characteristic vector for S. .

The bit vector representation has the advantage that one can determine
whether the ith element of U is an element of a set in time independent of the
size of the set. Fufthermore. basic operations on sets such as union and in-
tersection can be carried out by the bit vector cperations vV and A.

If we do not wish to consider bit vector operations to be primitive (re-
quiring one time unit). then we can achieve the effect of a characteristic vector

—_—

T If the two lists are sorted. then a linear algorithm to find their intersection exists.
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by defining an array A, such that A[i] = | if and only if the ith member of U
is in set S. In this representation, it is still easy to determine whether an ele-
ment is a member of a set. The disadvantage is that unions and intersections
require time proportional to ||[U||t rather than the sizes of the sets involved.
Likewise, the space required to store set S is proportional to |U| rather than ||S]|.

2.3 GRAPHS

We now introduce the mathematical notion of a graph and the data structures
commonly used to represent a graph.

Definition. A graph G = (V, E) consists of a finite, nonempty set of ver-
tices V and a set of edges E. If the edges are ordered pairs (v, w) of ver-
tices, then the graph is said to be directed; v is called the tail and w the
head of the edge (v, w). If the edges are unordered pairs (sets) of distinct
vertices, also denoted by (v, w), then the graph is ,said to be undirected.t

!

In a directed graph G = (V, E), if (v, w) is. an edge in E, then we say ver-
tex w is adjacent to vertex v. We also say edge (v, w) is from v to w. The
number of vertices adjacent to v is called the (out-) degree of v.

In an undirected graph G = (V, E), if (v, w) is an edge in E we assume
(w, v) = (v, w), so (w, v) is the same edge. We say w is adjacent to v if (v, w)
[and therefore (w, v)] is in E. The degree of a vertex is the number of ver-
tices adjacent to it.

A path in a directed or undirected graph is a sequence of edges of the

form (v, vy), (Va, V3), . .., (Va—1, V2). We say that the path is from v, to v,
and is of length n— 1. Often such a path is represented by the sequence
Vi, Vo, . . ., vV, Of vertices on the path. As a special case, a single vertex de-

notes a path of length O from itself to itself. A path is simple if all edges and
all vertices on the path, except possibly the first and last vertices, are distinct.
A cycle is a simple path of length at least 1 which begins and ends at the same
vertex. Note that in an undirected graph, a cycle must be of length at least 3.

There are several common representations for a graph G = (V, E).
One such is the adjacency matrix, a ||V|| X ||V matrix A of 0’s and 1’s, where
the ijth element, A [/, ], is 1 if and only if there is an edge from vertex i to
vertex j. The adjacency matrix representation is convenient for graph algo-
rithms which frequently require knowledge of whether certain edges are
present, since the time needed to determine whether an edge is present is
fixed and independent of ||V]| and ||E|. The main drawback to using an adja-
cency matrix is that it requires ||V|]* storage even if the graph has only O(|V]))
edges. Simply to initialize the adjacency matrix in the straightforward manner
requires O(||V|]®) time, which would preclude O(||V])) algorithms for manipu-

T We use ||.X|| for the number of elements in (size or cardinality of ) set X.
t Note that (4, ¢) may be an edge of a directed graph. but not an undirected one.
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lating graphs with only O(]|V]|) edges. Although there exist methods to over-
come this difficulty (see Exercise 2.12), other problems almost invariably arise
which make O(||V]|) algorithms based on adjacency matrices rare.

An interesting alternative is to represent the rows and/or columns of an
adjacency matrix by bit vectors. Such a representation may introduce con-
siderable efficiency into graph algorithms.

Another possible representation for a graph is by means of lists. The
adjacency list for a vertex v is a list of all vertices w adjacent to v. A graph
can be represented by ||V adjacency lists, one for each vertex.

Example 2.2. Figure 2.6(a) illustrates a directed graph with four vertices.
Figure 2.6(b) shows the adjacency matrix. Figure 2. 6(c) shows the four adja-
cency lists, one-for each vertex. For example, there are edges from vertex 1

(a) (b)
HEAD NEXT
1 5 ’
vertex [T Jaf 4] 0] Vertices j (7)
Vertex ¢ i .
2 5 [ 2 6
6| 4 0
VereX Empty list Edges< ;[ 3 o
8 | 2 9
vege [ Jof3]5) o T
(c) (d)

Fig. 2.6 A directed graph and its representations: (a) directed
graph: (b) adjacency matrix: (c) adjacency lists: (d) tabular rep-
resentation of adjacency lists.
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to vertices 2 and 4. so the adjacency list for | has items 2 and 4 linked together
in the format of Fig. 2.1.

A tabular representation of the adjacency lists is shown in Fig. 2.6(d).
Each of the first four locations in the array NEXT holds a pointer to the first
vertex on an adjacency list, with NEXT/[/] pointing to the first vertex on the
adjacency list for vertex i. Note that NEXT[3] = 0, since there are no ver-
tices on the adjacency list of vertex 3. The remaining entries of array NEXT
represent the edges of the graph. The array HEAD contains the vertices in
the adjacency lists. Thus the adjacency list for vertex 1 begins at location 3,
since NEXT[1] =5. HEAD([5] = 2, indicating that there is an edge (1, 2).
NEXT[5] = 6,and HEAD[6] = 4 indicating the edge (1, 4). NEXT[6] =0,
indicating that there are no more edges with tail 1. O

Note that the adjacency list representation of a graph requires storage
proportional to [|[V]| + |[El. The adjacency list representation is often used
when [[E]| << [V

If the graph is undirected, then each edge (v, w) is represented twice,
once in the adjacency list of v and once in the adjacency list of w. In this case
one might add a new array called LINK to correlate both copies of an un-
directed edge. Thus if i is the location of vertex w in the adjaZ:ency list of v,
LINK([] is the location of v in the adjacency list of w.

If we wish to conveniently delete edges from an undirected graph, adja-
cency lists can be doubly linked. This is usually necessary because even if
we always delete an edge (v, w) which is the first edge on the adjacency list
for vertex v, the edge in the reverse direction may be in the middle of the
adjacency list for vertex w. In order to delete edge (v, w) from the adjacency
list of w quickly, we must be able to find the location of the previous edge on
this adjacency list quickly.

2.4 TREES

Next. we introduce a very important kind of directed graph, the tre€,”and we
consider the data structures appropriate to represent it.

Definition. A directed graph with no cycles is called a directed acyclic
graph. A (directed) tree (sometimes called a rooted tree) is a directed
acyclic graph satisfying the following properties:

1. There is exactly one vertex, called the root, which no edges enter.
Every vertex except the root has exactly one entering edge.

There is a path (which is easily shown unique) from the root to each
vertex.

A directed graph consisting of a collection of trees is called a forest.

Forests and trees are special cases of directed acyclic graphs that arise so
frequently that we shall develop additional terminology to discuss them.

W 19
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Definition. Let F = (V, E) be a graph which is a forest. If (., w)isin E.
then v is called the father of w, and w is a son of v. If there is a path from
v to w. then v is an ancestor of w and w is a descendant of v. Further-
more if v # w, then v is a proper ancestor of w, and w is a proper de-
scendant of v. A vertex with no proper descendants is called a leaf. A
vertex v and all its descendants are called a subtree of F. The vertex v
is called the roor of that subtree.

The depth of a vertex v in a tree is the length of the path from the root
tov. The height of a vertex v in a tree is the length of a longest path from
v to a leaf. The height of a tree is the height of the root. The level of a
vertex v in a tree is the height of the tree minus the depth of v. In Fig.
2.7(a), for example, vertex 3 is of depth 2, height 0, and level 1.

An ordered tree is a tree in which the sons of each vertex are ordered.
When drawing an ordered tree, we assume that the sons of each vertex
are ordered from left to right. A binary tree is an ordered tree such that:

1. each son of a vertex is distinguished either as a left son or as a right

son, and
2. no vertex has more than one left son nor more than one right son.

The subtree T, (if it exists) whose root is the left son of a vertex v is calied

the left subtree of v. Similarly. the subtree T, (if it exists) whose root is the
right son of v is called the right subtree of v. All vertices.in T, are said to be
to the left of all vertices in T,.

A binary tree is usually represented by two arrays LEFTSON and

RIGHTSON. Let the vertices of a binary tree be denoted by the integers

LEFTSON RIGHTSON

—_
N
[e)]

© ® N U BN W N
o|lo|lo|w|o|lojo|w
olo|lo|lw|lo|low|lo]| s

(a) (b)

Fig. 2.7 A binary tree and its representation.



54 DESIGN OF EFFICIENT ALGORITHMS 2,

from 1 to n. Then LEFTSON[i/] =, if and only if j is the left son of i
If i has no left son. then LEFTSON[i]=0. RIGHTSON][:/] is defined
analogously.

Example 2.3. A binary tree and its representation are given in Fig. 2.7(a
and (b). O

Definition. A binary tree is said to be complete if for some integer
every vertex of depth less than & has both a left son and a right son and
every vertex of depth & is a leaf. A complete binary tree of height & has
exactly 2k*' — 1 vertices.

A complete binary tree of height k is often represented by a single array.
Position 1 in the array contains the root. The left son of the vertex in posi
tion i is located at position 2/ and the right son at position 2/ + 1. Given
vertex at position i > 1, its father is at position |if2].

Many algorithms which make use of trees often traverse (visit each ver
tex of) the tree in some order. There are several systematic ways of doing
this. Three commonly used traversals are preorder, postordér, and inorder

Definition. Let T be a tree having root r with sons v, . . . , v, k= 0. In
the case £ = 0, the tree consists of the single vertex r.

A preorder traversal of T is defined recursively as follows:

1. Visit the root r.
2. Visit in preorder the subtrees with roots v, v,, . . ., v, in that order

A postorder traversal of T is defined recursively as follows:

1. Visit in postorder the subtrees with roots v,, v,, . .., v, in that order
2. Visit the root r.

(a) (b)

Fig. 2.8 Tree traversals: (a) preorder: (b) postorder; (c) inorder.
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For a binary tree. an inorder traversal is defined recursively as follows:

1. Visit in inorder the left subtree of the root r (if it exists).

2. Visitr.

3. Visit in inorder the right subtree of r (if it exists).

Example 2.4. Figure 2.8 illustrates a binary tree with the vertices numbered
in preorder (Fig. 2.8a). postorder (Fig. 2.8b). and inorder (Fig. 2.8c). O

Once numbers have been assigned by a traversal. it is convenient to refer
to vertices by their assigned numbers. Thus v will denote the vertex which
has been assigned the number v. If the vertices are numbered in the order
visited, then the numberings have some interesting properties.

In preorder all vertices in a subtree with root r have numbers no less
than r. More precisely, if D, is the set of descendants of r. then v is in D, if
and only if r = v < r+|D,|. By associating with each vertex v both a pre-
order number and the number of descendants we can easily determine whether
a vertex w is a descendant of v. After initially assigning preorder numbers
and calculating the number of descendants of each vertex, the question of
whether w is a descendant of 1 can be answered in a fixed amount of time
independent of tree size. Postorder numbers have an analogous property.

Inorder numbers of a binary tree have the property that each vertex
in the left subtree of a vertex v has a number less than v and each vertex in
the right subtree has a number greater than v. Thus to find vertex w, compare
wtorootr. If w=r,then w has beenfound. Ifw < r,thenrepeatthe process
for the left subtree: if w > r repeat the process for the right subtree. Eventu-
ally w will be found. Such properties of traversals will be used in later chapters.

One final definition concerning trees should be made.

Definition. An undirected tree is an undirected graph which is connected
(there is a path between any two vertices) and acyclic. A rooted un-
directed tree is an undirected tree in which one vertex is distinguished
as the root.

A directed tree can be made into a rooted undirected tree simply by
making all edges undirected. We shall use the same terminology and nota-
tional conventions for rooted undirected trees as for directed trees. The pri-
mary mathematical distinction is that in a directed tree all paths go from an-
cestors to descendants whereas in a rooted undirected tree paths exist in both
directions.

2.5 RECURSION

A procedure that calls itself. directly or indirectly. is said to be recursive.
The use of recursion often permits more lucid and concise descriptions of
algorithms than would be possible without recursion. In this section we shall
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procedure INORDER(VERTEX):
begin
l. if LEFTSON[VERTEX] # 0O then
INORDER(LEFTSON[VERTEX]):
NUMBER[VERTEX] < COUNT:
COUNT < COUNT + 1:
if RIGHTSON[VERTEX] # 0 then
INORDER(RIGHTSON[VERTEX])

oo

end

Fig. 2.9. Recursive procedure for inorder.

give an example of a recursive algorithm and sketch how recursion can be
implemented on a RAM.

Consider the definition of inorder traversal of a binary tree given in Sec-
tion 2.4. In creating an algorithm for assigning morder numbers to the ver-
tices of a binary tree, we would like the algorithm to reflect the definition of
inorder traversal. One such algorithm is given below. Note that the algorithm
calls itself recursively to number a subtree.

Algorithm 2.1. Inorder numbering of the vertices of a binary tree.

Input. A binary tree represented by arrays LEFTSON and RIGHTSON.
Qutput. An array called NUMBER such that NUMBER[:] is the inorder
number of vertex i.

Method. In addition to LEFTSON, RIGHTSON, and NUMBER, the
algorithm makes use of a global variable COUNT which contains the inorder
number to be assigned to a vertex. COUNT has initial value 1. The param-
eter VERTEX is initially the root. The procedure of Fig. 2.9 is used re-

cursively.
The algorithm itself is:
begin
COUNT <« I;
INORDER(ROOT)
end (J

The use of recursion has several advantages. First, it is often easier to
understand recursive programs. Had the above algorithm not been written
recursively, we would have had to construct an explicit mechanism for tra-
versing the tree. Following a path down the tree presents no problem, but
the ability to return to an ancestor requires storing the ancestors on a stack,
and the statements manipulating the stack would complicate the algorithm.
The nonrecursive version of the same algorithm might look like the following.
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Algorithm 2.2. Nonrecursive version of Algorithm 2.1.
Input. Same as Algorithm 2.1.
Qutput. Same as Algorithm 2.1.

Mecethod. The tree is traversed by storing on a stack all vertices which are
not yet numbered and which are on the path from the root to the vertex cur-
rently being searched. In goirig from vertex v to the left son of v, v is stored
on the stack. After a search of the left subtree of v, v is numbered and popped
from the stack. Then the right subtree of 1 is numbered.

In going from v to the right son of 1, v is not plaged on the stack, since
after numbering the right subtree we do not wish to return to v: rather, we wish
to return to that ancestor of v which has not yet been numbered (the closest
ancestor w of v such that v is in the left subtree of w). The algorithm is shown
in Fig. 2.10. O

begin
COUNT <« 1;
VERTEX < ROOT:
STACK <« empty;
left: while LEFTSON[VERTEX] # 0 do
begin \
push VERTEX onto STACK::
VERTEX < LEFTSON[VERTEX]
end;
center: NUMBER[VERTEX] < COUNT:
COUNT < COUNT + 1I;
if RIGHTSON[VERTEX] # 0 then
begin
VERTEX < RIGHTSON[VERTEX]:
goto left
end;
if STACK not empty then
begin
VERTEX <« top element of STACK:
pop STACK:
goto center
end
end

Fig. 2.10. Nonrecursive inorder algorithm.
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The recursive version is easily proved correct by induction on the num-
ber of-vertices in the binary tree. The nonrecursive version can similarly be
proved correct. but the induction hypothesis is not as transparent. and there
15 the additional concern of manipulating the stack and correctly traversing
the binary tree. On the other hand there may be a penalty for recursion which
affects. the constant factor in the time and space complexity.

The question naturally arises how recursive algorithms are to be trans-
lated into RAM code. To begin. it is sufficient, in light of Theorem 1.2, to
discuss the construction of RASP code. since the RASP can be simulated by
a RAM with at most a constant factor of slowdown. Here we shall discuss
a rather straightforward technique for implementing recursion. This tech-
nique is adequate for all the programs that we use in this book but it does not
cover all the cases that can arise.

At the heart of recursive procedure implementation is a stack in which
are stored the data used by each call of a procedure,which has not yet termi-
nated. That is, all nonglobal data is on the stack. “The stack |s divided into
stack frames, which are blocks of consecutivd locations (registers). Each call
of a procedure uses a stack frame whose length depends on the particular

procedure called. .
Suppose procedure A is currently in execution. The stack would look
like Fig. 2.11. If A calls procedure B, we do the following:

I. A stack frame of the proper size is placed on top of the stack. Into the

frame goes, in an order known to B:

a) Pointers to the actual parameters for this call of B.f

b) Empty space for the local variables used by B.

¢) The address of the RASP instruction in routine 4 which should be
executed after the call to B terminates (the return address).i If B is
a function that returns a value, a pointer to the location in 4’s stack
frame in which the value of the function is to be placed (the value ad-
dress) is also placed in the stack frame for B.

Control passes to the first instruction of B. The address of the value of

any parameter or local identifier belonging to B is found by indexing into

the stack frame for B.

3. When B terminates. it returns control to A by the following sequence
of steps.
a) The return address is obtained from the top of the stack.

19

+ If an actual parameter is an expression. it is evaluated in the stack frame of A and
a pointer to that value is placed in the frame for B. If an actual parameter is a struc-
ture such as an array. a single pointer to the first word of the structure suffices.

z It is the jumps to return addresses which are awkward (although possible. of course)
for the RAM and which motivate us to use the RASP model here.
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stack frame for main program

stack frame for procedure that called A

TOP — | stack frame for this call of A

Fig. 2.11. Stack for recursive procedure calls.

b) If B is a function. the value denoted by the expression portion of the
return statement is stored in the location prescribed by the value ad-
dress on the stack.

c) The stack frame for procedure B is popped from the stack. This
leaves the frame for procedure A4 on top of the stack.

d) Execution of A resumes at the location given by the return address.

Example 2.5. Consider the procedure INORDER from Algorithm 2.1.
When, for example, it calls itself with LEFTSON[VERTEX] as an actual
parameter, it stores the address of the new value of VERTEX on the stack
along with a return address to indicate that on completion of the call, execu-
tion continues with line 2. The variable VERTEX is thus effectively replaced
by LEFTSON[VERTEX] wherever VERTEX occurs in the procedure
definition.

In a sense, the nonrecursive version, Algorithm 2.2, is modeled on the
above implementation. However, we have there recognized that the comple-
tion of a call to INORDER with actual parameter RIGHTSON[VERTEX]
completes execution of the calling procedure also. Thus there is no need to
store a return address or to store VERTEX on the stack in the case where
the actual parameter is RIGHTSON[VERTEX]. O

The time required for a procedure call is proportional to the time re-
quired to evaluate the actual parameters and store pointers to their values on
the stack. The time for a return is certainly no greater than this.

In accounting for the time spent by a collection of recursive procedures.
it is usually easiest to charge the cost of a call to the procedure doing the
calling. Then one can bound. as a function of input size, the time spent by
a call of each procedure. exclusive of the time spent by the procedures it calls.
Summing this bound over all calls of procedures gives an upper bound on the
total time spent.
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In order to calculate the time complexity of a recursive algorithm we
make use of recurrence equations. A function T, (n) is associated with the
ith procedure and denotes the execution time of the ith procedure as a func-
tion ot some parameter n of the input. Usually one can express a recurrence
equation for T;(n) in terms of the execution times of procedures called by
procedure /. The resulting set of simultaneous recurrence equations is then
solved. Often only one procedure is involved. and T(n) depends on values
of T(m) for a finite set of m less than n. In the next section we shall study
solutions for some frequently encountered recurrences.

Remember that here. and elsewhere. all cost analyses assume the uniform
cost function. If we use the logarithmic cost function. the length of the
stack used to implement recursive procedures may affect the time complexity
analysis.

2.6 DIVIDE-AND-CONQUER

A common approach to solving a problem is to partition the problem into
smaller parts. find solutions for the parts, and then combine the solutions for
the parts into a solution for the whole. This approach. especially when used
recursively, often yields efficient solutions to problems in which the sub-
problems are smaller versions of the original problem. We illustrate the tech-
nique with two examples followed by an analysis of the resulting recurrence
equations.

Consider the problem of finding both the maximum and the minimum
elements of a set S containing # elements. For simplicity we shall assume
that n is a power of 2. One obvious way to find the maximum and minimum
elements would be to find each separately. For example, the following pro-
cedure finds the maximum element of S in n — | comparisons between ele-
ments of §.

begin
MAX < any element in S:
for all other elements x in S do
if v > MAX then MAX <« x
end

We could similarly find the minimum of the remaining n — | elements with
n — 2 comparisons, giving a total of 2n — 3 comparisons to find the maxi-
mum and minimum. assuming n = 2.

The divide-and-conquer approach would divide the set S into two sub-
sets Sy and S,. each with n/2 elements. The algorithm would then find the
maximum and minimum elements of each of the two halves. by recursive
applications of the algorithm. The maximum and minimum elements of S
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procedure MAXMIN(S):
. if ||IS|| = 2 then
begin
let S = {a, b}:
return (MAX(a. b). MIN(a. b))
end

') 1D

else
begin
divide S into two subsets S, and S,. each with half the elements:
(max1, minl) < MAXMIN(S)):
(max2, min2) «< MAXMIN(S,):
return (MAX(max1, max2), MIN(minl, min2))
end

Nk

Fig. 2.12. Procedure to find MAX and MIN.

could be calculated from the maximum and minimum elements of S, and S,
by two more comparisons. The algorithm is stated more precisely below.

Algorithm 2.3. Finding the maximum and minimum elements of a set.
Input. A set S with n elements, where n is a power of 2 and n = 2.
Output. The maximum and minimum elements of S.

Method. The recursive procedure MAXMIN is applied to set.S. MAXMIN
has one argumentt which is a set S with ||S|| = 2* for some k = 1, and it returns
a pair (a, b), where a is the maximum and 6 the minimum element in S Pro-
cedure MAXMIN is given in Fig. 2.12. O

Note that the only steps requiring a comparison between elements of S
are step 3, where the two elements of S are compared. and step 7, where we
must compare max1 with max2 and minl with min2. Let 7(n) be the num-
ber of comparisons between elements of S required by MAXMIN to find the
maximum and minimum elements in a set of n elements. Clearly, T(2) = 1.
If n > 2, T(n) is the total number of comparisons used in the two calls of
MAXMIN (lines 5 and 6) on sets of size n/2, plus the two comparisons from*
line 7. That is,

_[h for n=2,
T(n) {”T(n/") + 2. for n>2. e

+ Since we are only counting comparisons here. the method of passing arguments is
unimportant. However. if the set S is represented by an array. we can arrange to call
MAXMIN efficiently by passing pointers to the first and last elements in a subset of
S. which will be in consecutive words of the array.
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The function 7 (n) =3n— 2 is a solution to recurrence (2.2). It clearly
satisfies (2.2) for n = 2. and if it satisfies (2.2) for n = m. where m = 2, then
. Im .
T(2m)=2 (T_ 2) +2=4%02m) -2,
and thus it satisfies (2.2) for n = 2m. Thus, by induction on 1, we have shown
that T(n) = $n — 2 satisfies (2.2) whenever n is a power of 2.

We can show that at least 3n — 2 comparisons between elements of S are
necessary to find both the maximum and minimum elements in a set of 7 num-
bers. Thus Algorithm 2.3 is optimal with respect to the number of compari-
sons made between elements of S when #n is a power of 2.

In the preceding example. the divide-and-conquer approach reduced the
number of comparisons by a constant factor. In the next example we shall
actually reduce the asymptotic growth rate of an algorithm by using the
divide-and-conquer technique.

Consider multiplying two n-bit numbers. The traditional method re-
quires O(n*) bit operations. The method developed below requires on the
order of n'*? or approximately n'-*¥ bit operations.

Let x and v be two n-bit numbers. Again for simplicity we assume that
n is a power of 2. We partition x and y into two halves as shown in Fig. 2.13.
If we treat each half as an (n/2)-bit number, then we can express the product
as follows:

Xy = (a2 + b) (2" + d)

_ -, (2.3)
= ac2" + (ad + bc)2"* + bd.

Equation (2.3) computes the product of x and y by four multiplications of
(n/2)-bit numbers plus some additions and shifts (multiplications by powers
of 2). The product z of x and y can also be computed by the following program.

begin
u< (a+b)*(c+d):
Vo a o
w<b xd,
e v+ (u—v—w) *2" +w

(2.4)

end
Ignore for the moment the fact that due to a carry, ¢ + b and ¢ + d may
be (n/2 + 1)-bit numbers and assume that they have only n/2 bits. The scheme
requires only three multiplications of (n/2)-bit numbers, plus some additions
and shifts, to multiply two #n-bit numbers. One can use the multiplication

T Recall all logarithms are to the base 2 unless otherwise stated.
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X = a h

v= ¢ d

Fig. 2.13. Partition of bit strings.

routine recursively to evaluate the products «, v, and w. The additions and
shifts require time Og(n). Thus the time complexity of multiplying two n-bit
numbers is bounded from above by

— k’ fOl‘ n = l,
T(”)_{3T(n/2)+kn, for n>1,

where .k is a constant reflecting the additions and shifts in the expressions in
(2.4). The solution to recurrence (2.5) is bounded from above by

3k,1lc)u R 3/\-’11.59.

(2.5)

One can actually show that
T(n) = 3kn'*3 — 2kn

in (2.5). The proof proceeds by induction on n, for n a power of 2. The
basis, n =1, is trivial. If T(n) = 3kn'°e3 — 2kn satisfies (2.5) for n = m, then

T(2m) =3T(m) + 2km )
= 3[3km'®3 — 2km] + 2km
=3k(2m)'o=3 — 2k (2m)

for the induction step. Thus T(n) = 3kn'**3 follows.” Note that attempting
to use 3kn'°¢ 3 rather than 34n'°® 3 — 2kn in the induction fails to work.

In order for the multiplication algorithm to be complete, we must take care
of the fact that a + b and ¢ + d are (n/2 + 1)-bit numbers. and thus the product
(a + b){c + d) cannot be directly calculated by a recursive application of the
algorithm to a problem of size n/2. Instead. we must write a + b as a,2"? + b,,
where a, is the leading bit of the sum a + b and b, is the remaining bits. Simi-
larly, write ¢ +d as ¢,2"2 + d,. The product (a + b)(c + d) can be expressed as

a,c, 2"+ (a,d, + b,c,)2"*+ b,d,. (2.6)

The term b,d, is computed by a recursive application of the multiplication
algorithm on a problem of size n/2. The other multiplications in (2.6) can be
computed in Og(n) time, since they involve either one of the single bits a, and
¢; or a power of 2 as an argument.
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Example 2.6. This asymptotically fast integer-multiplication algorithm can
be applied to decimal numbers, as well as binary. The following calculations
illustrate the method.

Il
'JJ

I
wn
O —

1 c=139
| d=27
a+b=T2 c+d=286

u=(a+b)(c+d)=72x8=06192

vV=ac=3] X 59=1829

w=bhd=14] x27=1107
xy = 182900001 + (6192 — 1829 — 1107) x 100 + 1107
18616707 O

Note that the algorithm based on (2.4) has replaced one multiplication
by three additions and subtractions [in comparison with (2.3)]. The intuitive
reason why this replacement leads to asymptotic efficiency is that multiplica-
tion is harder to perform than addition, and for sufficiently large n, any fixed
number of n-bit additions requires less time than an n-bit multiplication no
matter what (known) algorithm we use. At first it appears that reducing the
number of (n/2)-bit products from four to three could at best reduce the total
time by 25%. However, (2.4) is applied recursively to compute (n/2)-bit,
(n/4)-bit, . . . products. The 25% savings at each level is compounded and
accounts for the improvement in the asymptotic time complexity.

The time complexity of a procedure is determined by the number and
size of the subproblems and to a lesser extent by the amount of work neces-
sary to divide the problem into subproblems. Since recurrences of the form
of (2.2) or (2.5) arise frequently in analyzing recursive divide-and-conquer
algorithms we shall consider the solution in the general case.

~
l
“w

X ¢
.\ ’

19 &
~N -
S
Il
&

Theorem 2.1. Let a, b, and ¢ be nonnegative constants. The solution to
the recurrence

b, for n=1.

T(n) = {aT(n/C) + bn, for n>1

for n a power of ¢ is

O(n), if a<e,
T(n) ={0(n log n). if a=c,
O (n'=-), if a>
Proof. 1If nis a power of ¢, then

log. n
T(n) = bn i ri. where r= q/c.

i=0

t v must be shifted four decimal places and « — v — w shifted two.
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If - ¢ then X2y r’ converges. so T(n) is O(n). If a = c. then each term
in the sum is unity. and there are O(log n) terms. Thus T(n) 1s Own log n).
finally. if @ > ¢ then

lo, n /.I+Iu):‘_ no___ l

hn' N ri=bn —m™m8—
P r—1

i=0
which is O(a"™ ") or equiva]ently o' .

From Theorem 2.1 we see that dividing a problem (using a linear amount
of work) into two subproblems of half size results in an O(n log n) algorithm.
If the number of subproblems were 3. 4. or 8, then the algorithm would be of
order n'* %, n*, or 1%, respectively. On the other hand. dividing the problem
into four subproblems of size n/4 results in an O(n log n) algorithm. and 9
and 16 subproblems yield algorithms of order #'¢* and n®, respectively. Thus
an asymptotically faster algorithm for integer multiplication could be obtained
if one divided the integers into four pieces and were able to express integer
multiplication in terms of eight or fewer smaller multiplications. Other im-
portant recurrences arise when the work to divide the problem is not propor-
tional to the size of the problem. Some of these are covered in the exercises.

In the case where 1 is not a power of ¢, one can usually embed a problem
of size n in a problem of size n', where 1’ is the smaliest power of ¢ equal to
or greater than n. Thus the asymptotic growth rates of Theorem 2.1 hold for
arbitrary n. In practice. one can often design recursive algorithms which
divide problems of any size as nearly into ¢ equal parts as possible. These
algorithms are usually more efficient (by a constant factor) than those obtained
by pretending the input size is the next-higher power of c.

2.7 BALANCING

Both our examples of the divide-and-conquer technique partitioned a problem
into subproblems of equal size. This was not a coincidence. A basic guide
to good algorithm design is to maintain balance. To illustrate this principle
we shall use an example from sorting and contrast the effect of dividing a prob-
lem into unequal-size subproblems as opposed to equal-size subproblems.
The reader should not infer from the example that divide-and-conquer is the
only technique in which balancing is useful. Chapter 4 contains several ex-
amples in which balancing sizes of subtrees or balancing the costs of two
operations results in efficient algorithms.

Consider the problem of sorting a sequence of n integers into nonde-
creasing order. Perhaps the simplest sorting method is to locate the smallest
element by scanning the sequence and then to interchange the smallest ele-
ment with the first.  The process is repeated on the last n — | elements. which
results in the second smallest element being placed in the second position.
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2 elements sorts the

-

Repeating the process on the last n —2, n—3,...
sequence.
The algorithm gives rise to the recurrence

_|o. for n=1, -
Tin) = {T(n —1)+n—1, for n>1 (2.7)

for the number of comparisons made between the elements to be sorted. The
solution to (2.7) is T(n) = n(n—1)/2, which is O(n?).

Although this sorting algorithm could be viewed as a recursive applica-
tion of divide-and-conquer with division into unequal pieces, it is not efficient
for large n. In order to design an asymptotically efficient sorting algorithm
one should achieve a balance. Instead of dividing a problem of size n into
two problems, one of size 1 and one of size n — 1, one should divide the prob-
lem into two subproblems of approximately half the size. This is accomplished
by a method known as merge sorting.

Consider a sequence of integers x;, X, . . . , X,. Again for simplicity
assume that n is a power of 2. One way to sort the sequence is to divide it
into two sequences x,, Xs, . . . , Xp2 @nd Xgy2)41- - - - » Xn, SOrt each subsequence,

and then merge them. By “merging,” we mean taking the two sequences
which are already sorted and combining them into one sorted sequence.

Algorithm 2.4. Mergesort.

Input. Sequence of numbers x, x,, . . . , x,, where n is a power of 2.
Output. Sequence Y, ¥a, ..., Vs, a permutation of the input satisfying
VM=V =" =V

Method. We make use of a procedure MERGE(S, T), which takes two sorted
sequences S and T as input and produces as output a sequence consisting of
the elements of S and 7 in sorted order. Since S and T are themselves sorted,
MERGE requires at most one fewer comparison than the sum of the lengths
of S and T. It works by repeatedly selecting the larger of the largest elements
remaining on S and T, then deleting the element selected. Ties may be broken
in favor of §. ’

We also make use of the procedure SORT(. ) in Fig. 2.14. which sorts

the subsequence x;, Xy, . . ., x; on the assumption that the subsequence has
length 2% for some k = 0.
To sort the given sequence x,, X,, . . . . X, we call SORT(I, »). O

In counting comparisons. Algorithm 2.4 gives rise to the recurrence

0 for n=1,

T(”"_'{zr(n/ZHn—L for n>1

whose solution, by Theorem 2.1, is T(n) = O(n log n). For large n, bal
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procedure SORT(. j):
if i = j then return x;
else
begin
m<— (i+j—1)/2:
return MERGE(SORT(i. m), SORT(m+ 1.))
end

Fig. 2.14. Mergesort.

ancing the size of the subproblems has paid off handsomely. A similar anal-
vsis shows that the total time, not only comparisons, spent in procedure SORT
is O(n log n).

2.8 DYNAMIC PROGRAMMING

Recursive techniques are useful if a problem can be divided into subproblems
with reasonable effort and the sum of the sizes of the subproblems can be
kept small. Recall from Theorem 2.1 that if the sum of the sizes of the sub-
problems is an, for some constant a > 1, the recursive algorithm is likely to
be polynomial in time complexity. However, if the obvious division of a prob-
lem of size n results in n problems of size n — 1, then a recursive algorithm is
likely to have exponential growth. In this case a tabular technique called
dvnamic programming often results in a more efficient algorithm.

In essence, dynamic programming calculates the solution to all subprob-
lems. The computation proceeds from the small subproblems to the larger
subproblems, storing the answers in a table. The advantage of the method
lies in the fact that once a subproblem is solved, the answer is stored and
never recalculated. The technique is easily understood from a simple example.

Consider the evaluation of the product of n matrices

.M=M1XM2X".XM"'

where each M, is a matrix with r;,_, rows and r; columns. The order in which
the matrices are multiplied together can have a significant effect on the total
number of operations required to evaluate M, no matter what matrix multi-
plication algorithm is used.

Example 2.7. Assume that the multiplication of a p X ¢ matrix by a g X r
matrix requires pgr operations, as it does in the “‘usual™ algorithm. and con-
sider the product

M= M, X M, X M, X M, . (2.8)
[10Xx20] [20xS0] [S0x1] [IX 100]
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where the dimensions of each M, are shown in the brackets. Evaluating M
in the order

M, X (My X (My X M,))

requires 125.000 operations, while evaluating M in the order
(M X (M, X My)) XM,

requires only 2200 operations. (J

Trying all possible orderings in which to evaluate the product of # matrices
so as to minimize the number of operations is an exponential process (see Ex-
ercise 2.3 1), which is impractical when n is large. However, dynamic program-
ming prowdes an O(n®) algorithm. Let m;; be the minimum cost of computmg

MiX My X+ XM;forl =i=<j=<n. Clearly,
0, if i=j
- L 2.9
M= {MILN (’nxk+mk+l)+’z I’A’J) if J=> L ( )
The term m;, is the minimum cost of evaluating M’ = M; X M,.,X - - - X M,..
The second term, my,, ;, is the minimum cost of evaluating
M M,~+l X My, X M,.

The third term is the cost of multiplying M’ by M’'. Notethat M'isan ri_; X r;
matrix and M'’ is an r, X r; matrix. Equation (2.9) states that m;;, j > i, is the
minimum, taken over all possible values of & between i and j — 1, of the sum
of these three terms.

The dynamic programming approach calculates the m;;’s in order of in-
creasing difference in the subscripts. We begin by calculating m;; for -all i,
then m;;,, for all i, next m; ;,,, and so on. In this way, the terms m;, and m;., ;
in (2.9) will be available when we calculate m;;. This follows since j — i must
be strictly greater than either of Kk — i and j— (A + 1) if & is in the range i <
k < j. The algorithm is given below.

Algorithm 2.5. Dynamic programming algorithm for computing the minimum
cost order of multiplying a string of n matrices, M, X M, X - - - X M,,.

Input. ry, ry,....r, where r,_, and r; are the dimensions of matrix M,

Output. The minimum cost of multiplying the M;’s. assuming pgqr operations
are required to multiply a p X ¢ matrix by a ¢ X r matrix.

Method. The algorithm is shown in Fig. 2.15. 0O
Example 2.8. Applying the algorithm to the string of four matrices in (2.8),

where r,. .. .. ryare 10, 20. 50, 1. 100. would result in computing the values
for the my;’s shown in Fig. 2.16. Thus the minimum number of operations
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begin
1., for i < 1 until n do m;; < 0:
2. for / < 1 until n — 1 do
3. for i <— 1 until n —/ do
begin
4. J—i+L
5. my; <= MIN (my + mygy;+ ricy * g % r5)
end; i=k<j
6. write m,,
end

Fig. 2.15. Dynamic programming algorithm for ordering matrix multiplications.

m, =0 mMyy =0 mgy =0 my=0

1
nyo = 10,000 Moy = ]000 msgy = 5000

my; = 1200 m,, = 3000
my, = 2200
Fig. 2.16. Costs of computing products M; X M., X - -+ + X M,

required to evaluate the product is 2200. An order in which the multiplica-
tions may be done can be determined by recording, for each table entry, a
value of k which gives rise to the minimum seen in (2.9). (J >

29 EPILOGUE

This chapter has touched upon a number of fundamental techniques used in
efficient algorithm design. We have seen how high-level data structures such
as lists, queues, and stacks allow the algorithm designer to remove himself
from such mundane chores as manipulating pointers and permit him to focus
on the overall structure of the algorithm itself. We have also seen how the
powerful techniques™of recursion and dynamic programming often lead to
elegant and natural algorithms. We also presented certain general principles
such as divide-and-conquer and balancing. )

These techniques are certainly not the only tools available but they are
among the more important. As we progress through the remainder of this
book. we shall encounter a number of other techniques. These will range
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from selecting an appropriate representation for a problem to performing
operations in a judicious order. Perhaps the most important principle for
the good algorithm designer is to refuse to be content. The designer should
continue to examine a problem from a number of viewpoints until he is con-
vinced that he has the most suitable algorithm for his needs.

EXERCISES

2.1

2.3

2.4

2.5

2.6

#2.7

2.8

Select an implementation for a doubly linked list. Write Pidgin ALGOL algo-
rithms for inserting and deleting an item. Make sure your programs work when
deleting the first and/or the last item, and when the list is empty.

Write an algorithm to reverse the order of items on a list. Prove that your
algorithm works correctly.

Write algorithms to implement the operations PUSH, POP, ENQUEUE, and
DEQUEUE mentioned in Section 2.1. Do not forget to check whether a pointer
has reached the end of the array reserved for the stack or queue.

Write the conditions for testing a queue for emptiness. Assume the array
NAME used in Section 2.1 is of size . How many elements may be stored in
the queue? Draw pictures illustrating the queue and typical positions for the
pointers FRONT and REAR when the queue (a) is empty. (b) contains one
element. and (c) is full.

Write an algorithm to delete the first edge (v. w) on the adjacency list for v in
an undirected graph. Assume that adjacency lists are doubly linked and that
LINK locates v on the adjacency list of w, as described in Section 2.3.

Write an algorithm to construct the adjacency lists for an undirected graph.
Each edge (v, w) is to be represented twice, once in the adjacency list of v and
once in the adjacency list of w. The two copies of each edge should be linked
together so that when one is deleted the other can also be deleted easily. Assume
the input is a list of edges.

(Topological sort.) Let G = (V, E) be a directed acyclic graph. Write an algo-
rithm to assign integers to the vertices of G such that if there is a directed edge
from vertex i to vertex j, then i is less than j. [Hint: An acyclic graph must
have a vertex with no edge coming into it. Why? One solution to the problem
is to search for a vertex with no incoming edge. assign this vertex the lowest
number, and delete it from the graph. along with all outgoing edges. Repeat the
process on the resulting graph, assigning the next lowest number. and so on.
To make the above algorithm efficient. i.e.. O(|E]| + ||[V])). one must avoid search-
ing each new graph for a vertex with no incoming edge.]

Let G = (V. E) be a directed acyclic graph with two designated vertices. the
start vertex and the destination vertex. Write an algorithm to find a set of paths
from the start vertex to the destination vertex such that

1) no vertex other than the start or destination vertex is common to two paths.
2) no additional path can be added to the set and still satisty condition (1).
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LEFTSON RIGHTSON

1 2 3
2 0 4
3 0 0
4 5 6
5 0 0
6 0 0

Fig. 2.17 A binary tree.

Note that there may be many sets of paths satisfying the above conditions. You
are not required to find the set with the most paths but any set satisfying the
above conditions. Y our algorithm should have an O(|E]|| + ||VI|) execution time.

(Stable marriage problem.) Let B be a set of n boys and G be a set of n girls.
Each boy ranks the girls from 1 to n and each girl ranks the boys from 1 to »n.
A pairing is a one-one correspondence of boys to girls. A pairing is stable if
for each two boys b, and b, and their paired girls g, and g,, the following two
conditions are both satisfied:

1) either b, ranks g, higher than g,, or g, ranks b, higher than b,,

2) either b, ranks g, higher than g,, or g, ranks b, higher than b,.

Prove that a stable pairing always exists and write an algorithm to find one such
pairing.

Consider a binary tree with names attached to the vertices. Write an algorithm
to print the names in (a) preorder, (b) postorder. and (c) inorder.

Write an algorithm to evaluate (a) prefix Polish, (b) infix, and (c) postfix Polish
arithmetic expressions with operators + and X.

Develop a technique to initialize an entry of a matrix to zero the first time it is
accessed, thereby eliminating the O (||V]]?) time to initialize an adjacency matrix.
[Hint: Maintain a pointer in each initialized entry to a back pointer on a stack.
Each time an entry is accessed. verify that the contents are not random by making
sure the pointer in that entry points to the active region on the stack and that the
back pointer points to the entry.]

Simulate Algorithms 2.1 and 2.2 on the binary tree in Fig. 2.17.
Prove that Algorithm 2.2 is correct.

(Towers of Hanoi.) The Towers of Hanoi problem consists of three pegs A,
B. and C. and n squares of varying size. Initially the squares are stacked on
peg A in order of decreasing size. the largest square on the bottom. The prob-
lem is to move the squares from peg A to peg B one at a time in such a way
that no square is ever placed on a smaller square. Peg C may be used for tem-
porary storage of squares. Write a recursive algorithm to solve this problem.
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Input 1 “—————» * Output 1

Input 2e— oy - Qutput 2

——— Connections in position 1

------- Connections in position 2

Fig. 2.18 A two-position switch.

What is the execution time of your algorithm in terms of the number of times :
square is moved?

Solve Exercise 2.15 with a nonrecursive a]gonthm. Which algorithm is easie
to understand and prove correct?

Prove that 2" — 1 moves are both necés?zfry and sufficient for the solution tc
Exercise 2.15.

Write an algorithm to generate all permutations of the integers | to n. [Hint

The set of permutations of the integers 1 to n can be obtained from the set o;

permutations of the integers 1 to n — 1 by inserting n in each possible positior*
of each permutation.]

Write an algorithm to find the height of a binary tree. Assume that the tree is
represented as in Fig. 2.7(b).

Write an algorithm for calculating the number of descendants of each vertex ir
a tree.

Considér a two-position switch with two inputs and two outputs, as shown in
Fig. 2.18. In one position inputs 1 and 2 are connected to outputs | and 2, re-
spectively. In the other position inputs-1 and 2 are connected to outputs 2 anc
1, respectively. Using these switches, design a network with n inputs and r.
outputs which is capable of achieving any of the n! possible permutations of the
inputs. Your network should use no more than O(n log n) switches. [Hint.
Make use of the divide-and-conquer approach. ]

Write a RASP program to simulate the following program computing (:')

procedure COMB(n, m):
if m = 0 or n = m then return I
else return (COMB(n — t7mn) < COMB(n— 1, m— 1))

-
Use a stack to store current values of n and m and the return and value addresse:
when calls are made.

In a number of situations a problem of size n is advantageously’divided into
Vn subproblems of size about V. Recurrence equations of the form

T (L':) =nT(n) + bn*

ar
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result. where r is an integer. r = 1. Show that the solution to the recurrence
equation is O(n(log n)" loglog n).
Evaluate the sums:

a) ’;: i b) i al c) i ia’

i=1 i=1 —ti=1

3 n n
oz o3() 03]

i=1 i=0 i=1

Solve the following recurrences, given 7(1) = I:
a) T(n)=aT(n—1) + bn b) T(n) = T(n/2)+br1 log n
c) T(n)=aT(n—1) + bn° d) T(n)=aT(n/2) + bn¢

Modify Algorithm 2.3 for finding the maximum and minimum elements of a
set by allowing the recursion to go down to level ||S||= 1. What is the asymp-
totic growth rate of the number of comparisons?

Show that [$n — 2] comparisons are necessary and sufficient for finding both
the largest and smallest elements in a set of n elements.

Modify the integer-multiplication algorithm to divide each integer into (a) three,
and (b) four pieces. What are the complexities of your algorithms?

Let 4 be an array of positive or negative integers of size n, where A[1] <
A[2] < - - - < A[n]. Write an algorithm to find an i such that A[i] =i pro-
vided such an / exists. What is the order of execution time of your algorithm?
Prove that Oc(log n) is the best possible.

If n is not a power of 2 in Algorithm 2.4, we can obtain a valid merge sort-
ing algorithm by replacing the statement m < (i+j— 1)/2 in Fig. 2.14 by
m < [(i+)/2]. Let T(n) be the number of comparisons to sort n elements
by this method.
a) Show that

T(1)=0

T(n)=T(n/2])+ T([n/2]) + n—1

b) Show that the solution to this recurrence is
T(n) = n[log n] — 2Meexl 4+ |
Show that the solution to the recurrence

X(1)=1.
n—=1i

X(n)=2X(i)X(n—i). for n> 1.
i=1

s 1 2n
/\(n+l)—n+ 1 (n)'

X (n) is the number of ways to fully parenthesize a string of n symbols. The
X (n)'s are called the Catalan numbers. Show that X (n) = 2"=,

Modify Algorithm 2.5 to write out an order in which the matrices should be
multiplied so as to minimize the number of scalar multiplications.
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2.33 Write an efficient algorithm to determine an order of evaluating the matrix
product M, X M, X - - - X M, so as to minimize the number of scalar multipli-
cations in the case where each M is of dimension 1 X 1.1 X d.d X 1.ord X d fot
some fixed d.

Definition. A conrext-free grammar in Chomsky normal form G is a four-tuple
(N, X, P.S) where (1) N is a finite set of nonterminal symbols, (2) X is a finite
set of terminal symbols, (3) P is a finite set of pairs, called productions, of the
form A — BC or A > a where A, B. C arein N and ¢ isin . and (4) S is a
distinguished symbol in N. We write ady = afy if a. 8. y are strings of non-
terminals and terminals and A — B is in P. L(G), the lunguage generated by
G. is the set of terminal strings {w|S = w} where ==is the reflexive and transi-
tive closure of =.

*2.34 Write an O(n) algorithm to determine whether a given string w = aa, * * - a,
is in L(G), where G = (N, X, P, S) is a context-free grammar in Chomsky nor-
mal form. [Hint: Let m;={A|A € N and A== a;a;4, . . . a;}. w € L(G) if

and only if § € m,,. Use dynamic programming t6 compute the m;;’s.]

*2.35 Let x and y be strings of symbols from gome alphabet. Consider the opera-
tions of deleting a symbol from x, inserting a symbol into x, and replacing a sym-
bol of x by another symbol. Describe an algorithm to find the minimum number
of such operations needed to transform x into y. '

BIBLIOGRAPHIC NOTES

More information on data structures and their implementation can be found in Knuth
[1968] or Stone [1972]. Pratt [1975] contains a description of recursion implemen-
tation in ALGOL-like languages. Berge [1958] and Harary [1969] discuss graph
theory. Knuth [1968] is a source for trees and tree traversals. Burkhard [1973] is
an additional source on tree traversal algorithms.

The optimality of Algorithm 2.3 (finding the minimum and maximum) was shown
by Pohl [1972]. The O(n'*") integefr multiplication algorithm from Section 2.6 is by
Karatsuba and Ofman [1962]. Winograd [1973] considers such speed-ups from a
more general point of view.

The notion of dynamic programming was popularized by Bellman [1957], and
Algorithm 2.5 is a well-known application reported by Godbole [1973] and Muraoka
and Kuck [1973]. The application of dynamic programming to context-free language
recognition (Exercise 2.34) is the independent work of J. Cocke, Kasami [1965] and
Younger [1967]. Wagner and Fischer [1974] contains a solution to Exercise 2.35.

For more information on the solution of recurrence equations, see Liu [1968]
or Sloane [1973].
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In this chapter we consider two important related problems—sorting a
sequence of elements and selecting the Ath smallest element in a sequence.
By sorting a sequence we mean rearranging the elements in the sequence so
that the elements appear in nonincreasing or nondecreasing order. We can
find the Ath smallest element in a sequence by sorting the sequence into non-
decreasing order and selecting the Ath element from the resulting sequence.
However. we shall see that there are faster methods than this for selecting the
kth smallest element.

Sorting is both a practically important and theoretically interesting
problem. Since a significant portion of commercial data processing involves
sorting large quantities of data, efficient sorting algorithms are of considerable
economic importance. Even in algorithm design, the process of sorting a
sequence of elements is an essential part of many algorithms.

In this chapter we consider two classes of sorting algorithms. The first
class of algorithms makes use of the structure of the elements to be sorted.
For example, if the elements to be sorted are integers in a fixed range O to
m — |, then we can sort a sequence of n elements.in O(n + m) time; if the ele-
ments to be sorted are strings over a fixed alphabet, then a sequence of strings
can be sorted in time linearly proportional to the sum of the lengths of the
strings.

The second class of algorithms assumes no structure on the elements to
be sorted. The basic operation is a comparison between a pair of elements.
With algorithms of this nature we shall see that at least n log n comparisons
are needed to sort a sequence of n elements. We give two O¢(n log n) sorting
algorithms — Heapsort. which is Oc¢(n log n) in the worst case, and Quicksort,
which is O¢(n log n) in the expected case.

3.1 THE SORTING PROBLEM

Definition. A partial order on a set S is a relation R such that for each «,
b.and ¢ in S:

1. aRa is true (R is reflexive),
2. aRb and bRc¢ imply aRc (R is transitive), and
3. aRb and bRa imply a = b (R is antisymmetric).

The relation = on integers and the relation C (set inclusion) are two ex-
amples of partial orders.

A lincar order or total order on a set S is a partial order R on § such
that for every pair of elements «. b either «Rb or hRu. The relation =
on integers is a linear order;t C on sets is not.

T Fora hinear order =, we use a . hto denote a < b but a = b. as one would expect.
Also. b - ais synonymous with « <2 b and b = « i1s the same as a = b,
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The sorting problem can be formulated as follows. We are given a
sequence of n elements a,, a,. . . . . a, drawn from a set having a linear order,
which we shall usually denote <. We are to find a permutation 7 of these n
clements that will map the given sequence into a nondecreasing sequence
ot Q2+ v v s a.y such that a,¢) = aqie for 1 =i < n. Usually we shall
produce the sorted sequence itself rather than the sorting permutation 7.

Sorting methods are classified as being internal (where the data resides in
random access memory) or external (where the data is predominantly outside
the random access memory). External sorting is an integral part of such
applications as account processing, which usually invqlve far more elements
than can be stored in random access memory at one time. Thus external
sorting methods for data which are on secondary storage devices (such as a
disk memory or a magnetic tape) have great commercial importance.

Internal sorting is important in algorithm design as well as commercial
applications. In those cases where sorting arises as part of another algorithm,
the number of items to be sorted is usually small enough to fit in random
access memory. However, we assuime that the number of items to be sorted
is moderately large. If one is going‘to sort only a handful of items, a simple
strategy such as the O(n?) ‘‘bubble sort” (see Exercise 3.5) is far more expe-
dient.

There are numerous sorting algorithms. We make no attempt to survey
all the important ones; rather we limit ourselves to methods which we have
found to be of use in algorithm design. We first consider the case in which
the elements to be sorted are integers or (almost equivalently) strings over a
finite alphabet. Here, we see that sorting can be performed in linear time.
Then we consider the problem of sorting without making use of the special
properties of integers or strings, in which case we are forced to make program
branches depend only on comparisons between the elements to be sorted.
Under these conditions we shall see that O(n log n) comparisons are neces-
sary, as well as sufficient, to sort a sequence of n elements.

3.2 RADIX SORTING

To begin our study of integer sorting, let a;. a,, . . . , a, be a sequence of in-
tegers in the range 0 to m — 1. If m is not too large. the sequence can easily
be sorted in the following manner.

l. Initialize m empt)rqueues. one for each integer in the range 0 to m — 1.
Each queue is called a bucket.

2. Scan the sequence a,. d.. . . . . a, from left to right, placing element «; in
the a;-th queue.

3. Concatenate the queues (the contents of queue i + 1 are appended to the
end of queue /) to obtain the sorted sequence.
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Since an element can be inserted into the ith queue in constant time. the
n elements can be inserted into the queues in time O(n). Concatenating the
m queues requires Q(m) time. If m is O(n). then the algorithm sorts # in-
tegers in time O(n). We call this algorithm a bucket sort.

The bucket sort can be extended to sort a sequence of tuples (i.e.. lists) of
integers into lexicographic order. Let < be a linear order on set S. The rela-
tion = when extended to tuples whose components are from S is a lex-
icographic order if (s, 8,.....58,) =t te. . ... 1,) exactly when either:

1. there exists an integer j such that s; < ; and for all { < j. s;=1t;, or
2. p=sqgands; =1 forl =i =p.

For example, if one treats strings of letters (under the natural alphabetic or-
dering) as tuples. then the words in a dictionary are in lexicographic order.

We first generalize the bucket sort to sequences consisting of A-tuples
whose components are integers in the range 0 to m — 1., The sorting is done
by making & passes over the sequence using the bucKet sort on each pass.
On the first pass the k-tuples are sorted according to their Ath components.
On the second pass the resulting sequence is sorted according to the (kK — 1)st
components. On the third pass the sequence resulting from the, second pass
is sorted according to the (K — 2)nd components, and so on. On the Ath (and
final) pass the sequence resulting from the (k — 1)st pass is sorted according
to the first components.t The sequence is now in lexicographic order. A
precise description of the algorithm is given below.

Algorithm 3.1. Lexicographic sort.
Input. A sequence A,, A,, ..., A, where each A; is a k-tuple
(aiy, digy - - o, dig)

with a;; an integer in the range 0 to m — 1. (A convenient data structure for
this sequence of k-tuples is an n X k array.)

Output. A sequence B,, B.,, . ...B, whichisapermutationofAd,,4.,....4,
such that B; = B, for 1 =i < n.

Method. In transferring a k-tuple 4; to some bucket, only a pointer to A4; is
actually moved. Thus A; can be added to a bucket in fixed time rather than
time bounded by k. We use a queue called QUEUE to hold the *‘current”
sequence of elements. An array Q of m buckets is also used. where bucket
Q[i] is intended to hold those k-tuples that have the integer / in the compo-
nent currently under consideration. The algorithm is shown in Fig. 3.1. OJ

t In many practical situations it is sufficient to bucket sort the strings only on the basis
of their first components. If the number of elements that get placed into each bucket
is small, then we can sort the strings in cach bucket with some straightforward sorting
algziithm such as bubble sort.
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begin
place A,. A.. . . .. A, in QUEUE:
for j < k step — 1 until | do
begin
for / <— O until m — 1 do make Q[/] empty:
while QUEUE not empty do
begin
let A; be the first element in QUEUE:
move A; from QUEUE to bucket Q[«;;]
end;
for /[ < O until m — 1 do
concatenate contents of Q[/] to the end of QUEUE
end
end

Fig. 3.1. Lexicographic sort algorithm.

Theorem 3.1. Algorithm 3.1 lexicographically sorts a length n sequence
of k-tuples, where each component of a A-tuple is an integer between 0
and m — 1, in time O((m + n)k).

Proof. The proof that Algorithm 3.1 works correctly is by induction on the
number of executions of the outer loop. The induction hypothesis is that
after r executions, the A-tuples in QUEUE will be lexicographically sorted ac-
cording to their r rightmost components. The result is easily established once
it is observed that the (r + 1)st execution sorts A-tuples by their (» + 1)st com-
ponent from the right, and that if two A-tuples are placed in the same bucket,
the first k-tuple precedes the second in the lexicographic order determined by
the r rightmost components.

One pass of the outer loop of Algorithm 3.1 requires O(m + n) time.
The loop is repeated k times to give a time complexity of O((m + m)k). O

Algorithm 3.1 has a variety of applications. It has been used in punched
card sorting machines for a long time. It can also be used to sort O(n) in-
tegers in the range 0 to n¥ — 1 in time O(kn). since such an integer can be
thought of as a A-tuple of digits in the range O to n — 1 (i.e.. the representation
of the integer in base n notation). ,

Our final generalization of the bucket sort will be to tuples of varying
sizes, which we shall call strings. 1f the longest string is of length k. we could
pad out every string with a special symbol to make all strings be of length &
and then use Algorithm 3.1. However. if there are only a few long strings.
then this approach is unnecessarily inefficient for two reasons. First, on each
pass, every string is examined. and second. every bucket Q[i] is examined
even if almost all of these buckets are empty. We shall describe an algorithm
that sorts a sequence of n strings of varying length, whose components are in
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the range 0 to m — 1. in time O(m + l,,). where [; is the length of the ith
string. and /.,y = -,/;. The algorithm is useful in the situation where /1 and
L1011 are both O (n).

The essence of the algorithm is to first arrange the strings in order of
decreasing length. Let /.. be the length of the longest string. Then, as in
Algorithm 3.1, [, passes of the bucket sort are used. However, the first
pass sorts (by rightmost component) only those strings of length /... The
second pass sorts [according to the (/,.« — 1)st component] those strings of
length at least /,,, — 1, and so on.

For example, suppose bab, abc, and a are three strings to be sorted.
(We have assumed that the components of tuples are integers, but for nota-
tional convenience we shall often use letters instead. This should cause no
difficulty because we can always substitute 0, 1, and 2 for a, b, and c, if we
like.) Here [, =3, so on the first pass we would sort only the first two
strings on the basis of their third components. In sorting these two strings we
would put bab into the b-bucket and abc into the c-bucket. The a-bucket
would remain empty. In the second pass we would sort these same two
strings on the second component. Now the a-bucket and b-bucket would be
occupied, but the ¢c-bucket would remain empty. On the third- and final pass
we would sort all three strings on the basis of their first component. This
time the a- and b-buckets would be occupied and the c-bucket would be
empty.

We can see that in general on a given pass many buckets can be empty.
Thus a preprocessing step that determines which buckets will be nonempty on
a given pass is beneficial. The list of nonempty buckets for each pass is de-
termined in increasing order of bucket number. This allows us to concat-
enate the nonempty buckets in time proportional to the number of nonempty
buckets.

Algorithm 3.2. Lexicographic sort of strings of varying length.

Input. A sequence of strings (tuples), 4,, A,, ..., A,, whose compo-
nents are integers in the range 0 to m — 1. Let /; be the length of A; =
(diy, dizy - - ., ajp,), and let [, be the largest of the /;’s.

Output. A permutation B, B.,, ..., B, of the 4;’s such that
B, =B,=--- =8B,.
Method

I. We begin by making lists, one for each I, 1 = [ = [,,,, of those symbols
that appear in the /th component of one or more of the strings. We do so
by first creating, for each component ¢y, | =i=<n, | ==/ of each
string A;, a pair (/, dy). Such a pair indicates that the /th component of
some string contains the integer «;. These pairs are then sorted lex-
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begin
l. make QUEUE empty:
2. for j < O until ;1 — 1 do make Q[/] empty:
3. for [ < /.. step —1 until 1 do
begin
4. concatenate LENGTH{[/] to the beginning of
QUEUE:7
5. while QUEUE not empty do
begin
6. let A; be the first string on QUEUE:
7. move A4; from QUEUE to bucket Q[a;]
end;
8. for each j on NONEMPTY[/] do
begin
9.. concatenate Q[/] to the end of QUEUE:
10. mzake 0[/] empty
end
end

end

+ Technically, we should only concatenate to the end of a queue, but concatenation to
the beginning should present no conceptual difficulty. The most efficient approach
here would be to select 4;'s from LENGTH/[/] first at line 6, then select them from
QUEUE, without ever concatenating LENGTH[/] and QUEUE at all.

19

Fig. 3.2. Lexicographic sort of strings of varying length.

icographically by an obvious generalization of Algorithm 3.1.f Then. by
scanning the sorted list from left to right it is easy to create [, sorted
lists NONEMPTY [/], for 1 =/ =< l,,, such that NONEMPTY[!] con-
tains exactly those symbols that appear in the /th component of some
string. That is, NONEMPTY [/] contains, in sorted order, all those in-
tegers j such that a; = j for some i.

We determine the length of each string. We then make lists
LENGTH[!], for 1 =l =l,,.. where LENGTH[/] consists of all
strings of length /. (Although we speak of moving a string, we are only
moving a pointer to a string. Thus each string can be added to
LENGTH[/] in a fixed number of steps.)

We now sort thé strings by components as in Algorithm 3.1, beginning
with the components in position /... However. after the ith pass

# In Algorithm 3.1. the assumption was made that components were chosen from the
Same alphabet. Here. the second component ranges from 0 to m — 1. while the first
ranges from | to ly...
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QUEUE contains only those strings of length /. — ¢ + | or greater. and
these strings will already be sorted according to components /., — i + 1
through /... The NONEMPTY lists computed in step | are used to de-
termine which buckets are occupied at each pass of the bucket sort.
This information is used to help speed up the concatenation of the
buckets. This part of the algorithm is given in Pidgin ALGOL in Fig.
3.20np.81.0

Example 3.1. Let us sort the strings a. bab, and abc using Algorithm 3.2.
One possible representation for these strings is the data structure shown in
Fig. 3.3. STRING is an array such that STRING/[{] is a pointer to the rep-
resentation of the ith string whose length and components are stored in the
array DATA. The cell in DATA pointed to by STRING[i] gives the
number j of symbols in the ith string. The next j cells of DATA contain
these symbols. K

The iists of strings used by Algorithm 3.2 are really lists of pointers such
as those in the array STRING. For notationl convenience, in the remainder
of this example we shall write the actual strings, rather than the pointers to
the strings, on lists. Bear in mind, however, that it is the pointers
rather than the strings themselves that are being stored in the queues.

In part 1 of Algorithm 3.2 we create the pair (1, a) from the first string,
the pairs (1, b), (2, a), (3, b) from the second, and the pairs (1, a), (2. b), (3, ¢)
from the third. The sorted list of these pairs is:

(1, a) (1, a) (1, b) (2, @) (2, b) (3, b) (3, ©).
By scanning this sorted list from left to right we deduce that

NONEMPTY([1] =a, b
NONEMPTY[2] =a, b
NONEMPTY[3] = b, ¢

In part 2 of Algorithm 3.2 we compute /, =1, [, =3, and /,=3. Thus
LENGTH[1] = a, LENGTH[2] is empty, and LENGTH[3] = bab, abc.
We therefore begin part 3 by setting QUEUE = bab, abc, and sorting these
strings by their third component. The fact that NONEMPTY[3] = b. ¢ as-
sures us that when we form the sorted list in lines 8-10 of Fig. 3.2, Q[a] need
not be concatenated to the end of QUEUE. We thus have QUEUE = bab,
abc after the first pass of the loop of lines 3-10 in Fig. 3.2.

In the second pass, QUEUE does not change, since LENGTH[2] is
empty and the sort by second component does not change the order. In the
third pass, we set QUEUE to «. bab, abc at line 4. The sort by first compo-
neats gives QUEUE = «, abc, bab. which is the correct order. Note that in
the third pass, Q[c¢] remains empty, and since ¢ is not on NONEMPTY[1].
we do not concatenate Q [¢] to the end of QUEUE. O
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STRING DATA
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l
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Fig. 3.3 Data structure for strings.

Theorem 3.2. Algorithm 3.2 s?rts its input in time O(l,,, + m), where

n
Itotal = Elt
i=1

Proof. An easy induction on the number of passes through the outer loop in
Fig. 3.2 proves that after i passes, QUEUE contains those strings of length
lmax — i+ 1 or greater, and that they are sorted according to components
lmax — i + 1 through /... Thus the algorithm lexicographically sorts its input.

For the timing result, part 1 of the algorithm uses O(l,,,) time to create
the pairs and O(m + l,,) time to sort them. Similarly, part 2 requires no
more than O (/,ya)) time.

We must now direct our attention to part 3 and the program of Fig. 3,2.
Let n; be the number of strings having an ith component. Let m; be the
number of different symbols appearing in the ith components of the strings
(i.e. m; is the length of NONEMPTY [i]).

Consider a fixed value of [ in line 3 of Fig. 3.2. The loop of lines 5-7
requires O(n,) time and the loop of lines 8-10 requires O(m,) time. Step 4
requires constant time, so one pass through the loop of lines 3-10 requires
O(m, + n;) time. Thus the entire loop takes

[
- 0(2 (m; + n,))
=1
time. Since

I Imas
2'"! = Ilu(al and Z"l = [wlah
=1 1=1
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we see that lines 3-10 require time O(ly,). Then, as line | requires constant
time and line 2 requires O(/m) time, we have the desired result. [J

We offer one example where string sorting arises in the design of an
algorithm. '

Example 3.2. Two trees are said to be isomorphic if we can map one tree into
the other by permuting the order of the sons of vertices. Consider the
problem of determining whether two trees T, and T, are isomorphic. The fol-
lowing algorithm works in time linearly proportional to the number of ver-
tices. The algorithm assigns integers to the vertices of the two trees, starting
with vertices at level 0 and working up towards the roots, in such a way that
the trees are isomorphic if and only if their roots are assigned the same in-

teger. The algorithm proceeds as follows.

1. Assign to all leaves of 7, and T, the integer 0.

2. Inductively, assume that all vertices of T, and T, at level i — 1 have been
assigned integers. Assume L, is a list of the vertices of T, at level i — |
sorted by nondecreasing value of the assigned integers. Assume L, is the
corresponding list for 7.1 ‘ i

3. Assign to the nonleaves of T, at level i a tuple of integers, by scanning
the list L, from left to right and performing the following actions: For
each vertex v on list L, take the integer assigned to v to be the next com-
ponent of the tuple dssociated with the father of v. On completion of this
step, each nonleaf w of T, at level i/ will have a tuple (iy, iy, . . . , ix) as-
sociated with it, where i, is, . . . , iy are the integers, in nondecreasing
order, associated with the sons of w. Let S, be the sequence of tuples
created for the vertices of T, on level i.

4. Repeat step 3 for T, and let S, be the sequence of tuples created for the
vertices of T, on level i.

5. Sort S, and S, using Algorithm 3.2. Let S} and S, respectively, be the
sorted sequences of tuples.

6. If S and S5 are not identical, then halt; the trees are not isomorphic.
Otherwise, assign the integer 1 to those vertices of T, on level i
represented by the first distinct tuple on i, assign the integer 2 to the
vertices represented by the second distinct tuple. and so on. As these
integers are assigned to the vertices of T, on level i, make a list L, of the
vertices so assigned. Append to the front of L, all leaves of T, on level i.
Let L, be the corresponding list of vertices of T,. These two lists can
now be used for the assignment of tuples to vertices at level i + | by re-

turning to step 3.

t You should convince yourself that level numbers can be assigned in O(n) steps by a
preorder traversal of the tree.
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Level 3

Level 2

Level 1

Level O

Tree 7,

Level 3

Level 2

Level 1

Level O

Tree 7, R

Fig. 3.4 Numbers assigned by tree isomorphism algorithm.

7. If the roots of T, and T, are assigned the same integer, T, and T, are
isomorphic. [J
Figure 3.4 illustrates the assignment of integers and tuples to the vertices
of two isomorphic trees.
» .
Theorem 3.3. We can determine whether two n-vertex trees are isomor-
phic in O(n) time. )

Proof. The theorem follows from a formalization of the algorithm of Ex-
ample 3.2. The proof of correctness of the algorithm will be omitted. The
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analysis of the running time is obtained by observing that the work of as-
signing integers to vertices at level /. other than leaves. is proportional to the
number of vertices at level i — 1. Summing over all levels results in O(n)
time. The work in assigning integers to leaves is also proportional to n and
thus the algorithm takes O(n) time. (J

A labeled tree is a tree in which labels are attached to the vertices. Sup-
pose the vertex labels are integers in the range 1 to n. Then we can deter-
mine whether two labeled trees with n vertices are isomorphic in linear time if
we include the label of each vertex as the first component of the tuple as-
signed to that vertex in the algorithm above. Thus we have the following cor-
ollary.

Corollary. Determining the isomorphism of two n-vertex labeled trees
with labels in the range 1 to n takes O(n) time.

3.3 SORTING BY COMPARISONS o

In this section we consider the problem of sorting a sequence of n eleinents
drawn from a linearly ordered set S whose elements have no known structure.
The only operation that can be used to gain information about the sequence is
the comparison of two elements. We first show that any algorithm which
sorts by comparisons must on some sequence of length n use at least
O(n log n) comparisons. '

Assume that there are n distinct elements a,, as, . . . , a, which are to be
sorted. An algorithm that sorts by comparisons can be represented by a
decision tree as described in Section 1.5. Figure 1.18 (p. 25) showed a de-
cision tree that sorts the sequence a, b, c. In what follows, we assume that
if element « is compared with element b at some vertex v of a decision tree,
then we branch to the left son of v if ¢ < b, and to the right son if a = b.

Normally, sorting algorithms that use comparisons for branching restrict
themselves tc comparing two input elements at a time. In fact, an algorithm
that works for an arbitrary linearly ordered set may not combine input data in
any way, since operations on data do not ““make sense’ in the completely gen-
eral setting. In any event, we can prove a strong result about the height of
any decision tree which sorts n elements.

Lemma 3.1. A binary tree of height /4 has at most 2* leaves.

Proof. An elementary induction on 4. One need only observe that a binary
tree of height /1 is composed of a root and at most two subtrees, each of height
atmost h — 1.

Theorem 3.4. Any decision tree that sorts n distinct elements has height
at least log n!
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proof. Since the result of sorting n elements can be any one of the n! permu-
iations of the input. there must be at least n! leaves in the decision tree. By
L.emma 3.1, the height must be at least log n!. OJ

Corollary. Any algorithm for sorting by comparisons requires at least
cn log n comparisons to sort n elements for some ¢ > 0 and sufficiently

large n.

Proof. We note that for n > |

n=nn—11n-—-2)--- ([%‘D = ('51)"12.

so log n! = (n/2) log (n/2) = (n/4) log n forn = 4. O

From Stirling’s approximation a more accurate estimate of n! is (n/e)". so
n(log n —log e) = nlog n — 1.44n is a good approximate lower bound on the
number of comparisons needed to sort n elements.

3.4 HEAPSORT—AN O(n log n) CdMPARlSON SORT

Since every sorting algorithm which sorts by comparisons requires essentially
n log n comparisons to sort at least one sequence of length 1, it is natural to
ask whether there exist sorting algorithms that use only O(n log n) compari-
sons to sort all sequences of length n. In fact, we have already seen one such
algorithm, the merge sort of Section 2.7. Another such algorithm is Heap-
sort. In addition to being a useful sorting algorithm. Heapsort uses an inter-
esting data structure which has other applications.

Heapsort is best understood in terms of a binary tree as in Fig. 3.5 in
which every leaf is of depth d or d — 1. We label the vertices of the tree with
the elements of the sequence to be sorted. Heapsort then rearranges the ele-
ments on the tree until the element associated with each vertex is greater than
or equal to the elements associated with its sons. Such a labeled tree is called
a heap.

Example 3.3. Figure 3.5 illustrates a heap. Note that the sequence of ele-
ments on the path from each leaf to the root is linearly ordered and that the-
largest element in a subtree is always at the root of that subtree. [J ‘

The next step in Heapsort is to remove from the heap the largest ele-
ment, which is at thg root. The label of some leaf is moved to the root and
that leaf is deleted. The tree is then remade into a heap and the process is
repeated. The sequence of elements removed from the heap is the sorted
sequence (in descending order).

A convenient data structure for a heap is an array 4. where A[1] is the
element stored at the root, and 4 [2i] and A [2i + 1] are the elements stored at
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Fig. 3.5 A heap.

the left and right sons (if they exist) of the vertex at-“which element A[i] is
stored. For example, the heap in Fig. 3.5 wo}}ld be represented by the fol-
lowing array. :

[§8)
I

16 (1119110 5|6 |8 |1

Observe that the vertices of smallest depth appear first in the array, and ver-
tices of equal depth appear in left-to-right order.

Not every heap can be so represented. In terms of the tree represen-
tation, the leaves at the lowest level must be as far left as possible, as in
Fig. 3.5. -

If we use an array to represent the heap, several operations in the Heap-
sort algorithm are easy to perform. For example, in the algorithm we must
remove the element at the root, store this element somewhere, then remake
the remaining tree into a heap, and remove the unlabeled leaf. We can
remove the largest element from the heap and store it by interchanging A[1]
and A [n], and then considering location n of the array no longer part of the
heap. We treat location n as the leaf deleted from the tree. To remake the
tree in locations 1, 2, ..., n— 1 into a heap, we take the new element A[1]
and percolate it as far down a path in the tree as necessary. We can then
repeat this process interchanging A[1] and A[n — 1] and considering the tree
to occupy locations 1, 2,...,n— 2, and so on.

Example 3.4. Consider, in terms of the heap of Fig. 3.5, what happens when
we interchange the first and last elements in the array representing the heap.
The resulting array corresponds to the labeled tree in Fig. 3.6(a).

9

4 (119 (10]5 |68 |1 16
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(a) ! (h)

Fig. 3.6 (a) Result of interchanging 4 and 16 in the heap of Fig. 3.5: (b) result after
reconstructing heap and excluding element 16.

We exclude element 16 from further consideration. To convert the resulting
tree into a heap, we exchange element 4 with 11. the larger of its two sons 11
and 9.

In its new position, 4 has sons 10 and 5. Since these are larger than 4,
we interchange 4 with 10, the larger son. Then the sons of 4 in its new posi-
tion are 1 and 2. Since 4 exceeds each of these. no further interchanges are
needed. The resulting heap is shown in Fig. 3.6(b). Note that although ele-
ment 16 has been removed from the heap it is still present at the end of the

array A. (O

We now begin a formal description of the Heapsort algorithm. Let
a,, a,, . .., a, be the sequence of elements to be sorted. Assume that these
elements are initially in the array A4 in this order, i.e., A[i]=a;, 1 =i < n.
The first step is to build the heap. That is. the elements in A are rearranged
to satisfy the heap property: A[i] = A[2i] for 1 =i=<n/2, and
A[i] = A[2i+ 1] for 1 =i < n/2. This is done by starting with the leaves
and building larger and larger heaps. Each subtree consisting of a leaf
already forms a heap. A subtree of height /1 is made into a heap by in-
terchanging the element at the root with the larger of the elements at the sons
of the root, if it is smaller than either of them. So doing may destroy a heap
of height /1 — 1, whi‘c‘:h must then be remade into a heap. The algorithm is
made precise below. .

Algorithm 3.3. Construction of a heap.
Input.  Array of elements A[i], | =i =<n.

Output. Elements of A arranged into a heap such that A[i] = A[|i/2]] for
Il <i<n
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Method. The heart of the algorithm is the recursive procedure HEAPIFY.
The parameters i and j give the range of locations in the array A having the
heap property. and i/ is the root of the heap to be made.

procedure HEAPIFY(, j):
1. if i is not a leaf and if a son of / contains a larger element than i
does then
begin
let k be a son of i with the largest element:
interchange A[i] and A[A]:
HEAPIFY(%, )
end

W9

The parameter is used to determine whether i is a leaf and whether i has one
or two sons. Ifi > j/2, theniis aleaf and HEAPIFY(i, j) need not do any-
thing, since A [i] is a heap by itself.

The algorithm to give all of A the heap property is simply:

procedure BUILDHEAP:
for i < nt step — 1 until 1 do HEAPIFY(i, n) O3

We next show that Algorithm 3.3 makes a heap out of A in linear time.

Lemma 3.2. If the vertices i+ 1,i+ 2,..., n are the roots of heaps,
then after a call to HEAPIFY(, n),allof i, i+ 1, . .., n will be the roots
of heaps.

Proof. The proof proceeds by backwards induction oni. The basis, i = n, is
trivial, since vertex n must be a leaf, and the test of line | assures that
HEAPIFY(n, n) does nothing.

For the inductive step, note that if vertex i is a leaf or if { has no son with
a larger element, then there is nothing to prove, by the above argument.
However, if vertex i has one son (i.e., if 2i=n) and if A[i] < A[2i], then
line 3 of HEAPIFY interchanges A[i] and 4[2i]. Atline 4, HEAPIFY(2i, n)
is called, so the inductive hypothesis implies that the tree with root
at vertex 2/ is remade into a heap. Verticesi+ 1,i+2,...,2i— | never
cease being the roots of heaps. Since in the new permutation of array 4 we
have A [i] > A [2i]. the tree with root i is likewise a heap.

Similarly, if vertex i has two sons (i.e.,, 2i + 1 < n)-and if the larger
of A[2i] and A[2i+ 1] is larger than A [/]. we can argue as above to show
that after the call of HEAPIFY(, nj, all of i, i+ 1,...,n will be roots of
heaps. O

Theorem 3.5. Algorithm 3.3 makes A4 into a heap in linear time.

T In practice. we would begin at [n/2].
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proof. Using Lemma 3.2. we may show by an easy backwards induction on i
that vertex i becomes the root of a heap foralli. | =i = n.

Let T(/) be the time required to execute HEAPIFY on a vertex of
height . Then T(h) = T(h— 1)+ ¢ for some constant ¢, which implies that
T is Oh).

Algorithm 3.3 calls HEAPIFY, exclusive of recursive calls, once for
each vertex. Thus the time spent by BUILDHEAP is on the order of the
sum. over all vertices, of the heights of the vertices. But at most [n/27*!] ver-
tices are of height /. Therefore, the total time spent by BUILDHEAP is on
the order of

-

which is O(n). O

We can now complete the specification of Heapsort. Once the elements
of A have been arranged into a heap, elements are removed one at a time from
the root. This .is done by interchanging A[1] and A4[n] and rearranging
A[1],A4[2],...,A[n— 1] intd a heap. Next A[1] and A[n — 1] are in-

terchanged and A[1],4[2],...,A[n— 2] are rearranged into a heap, and
so on until the heap consists of one element. At that point
A[1],A[2],...,A[n] is the sorted sequence.

Algorithm 3.4. Heapsort.
Input. Array of elements A[i], 1 =i < n.
Output. Elements of A sorted into nondecreasing order.

Method. We make use of the procedure BUILDHEAP, which is Algorithm
3.3. The algorithm is as follows.
begin ’
BUILDHEAP;
for i < n step —1 until 2 do
begin
interchange A[1] and A[/]:
HEAPIFY(l.i— 1)
end
end (J

2 .
Theorem 3.6. Algorithm 3.4 sorts n elements in time O(n log n).

Proof. The proof of correctness is by induction on the number of times m
that the main loop has been executed. The induction hypothesis is that after
m iterations A[n—m+1]..... A[n] contains the m largest elements in
sorted (smallest first) order, and A[1].. ... A[n— m] forms a heap. The de-
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tails are left for an exercise. The time to execute HEAPIFY(1. 1) is
Oilog /). Hence Algorithm 3.4 is of complexity O(n log n). O

Corollary. Heapsort is O{(n log n) in time complexity.

3.5 QUICKSORT—AN O(n log n) EXPECTED TIME SORT

So far we have considered only the worst-case behavior of sorting algorithms.
For many applications a more realistic measure of the time complexity of an
algorithm is its expected running time. When we consider sorting. we find
that no comparison sorting algorithm can have an expected time complexity
significantly lower than n log n under the decision tree model. However, we
do find that there are sorting algorithms whose worst-case running times are
cn® for some constant ¢ but whose expected running times are among the best
of known sorting algorithms. Quicksort, the algorithm to be discussed in
this section, is an example of such an algorithm.

Before we can talk about the expected running time of an algorithm, we
must agree on what the probability distribution of the inputs is. For sorting, a
natural assumption, and the one we shall make, is that every permutation of
the sequence to be sorted is equally likely to appear as an input. Under this
assumption, we can readily bound from below the expected number of com-
parisons needed to sort a sequence of n elements.

The general method is to associate with each leaf v of a decision tree the
probability that v will be reached on a given input. If we know the probabil-
ity distribution of the inputs, the probabilities associated with the leaves can
ve determined. Thus we can calculate the expected number of comparisons
made by a particular sorting algorithm by evaluating, over all leaves of the
decision tree for that algorithm, the sum Z;p,d;, where p; is the probability
of reaching the ith leaf and d, is its depth. This figure is called the expected
depth of the decision tree. We are thus led to the following generalization
of Theorem 3.4.

Theorem 3.7. On the assumption that all permutations of a sequence of n
elements are equally likely to appear as input, any decision tree that sorts
n elements has an expected depth of at least log n!.

Proof. Let D(T) be the sum of the depths of the leaves of a binary tree T.
Let D(/m) be the smallest value of D(T) taken over all binary trees T with m
leaves. We shall show. by induction on m, that D(m) = m log m.

The basis, m =1, is trivial. Now, assume the inductive hypothesis is
true for all values of /n less than &. Consider a decision tree T with & leaves.
T consists of a root having a left subtree T; with i leaves and a right subtree
T,_-; with k — i leaves for some i, | =i < k. Clearly.

D(T)=1i+ D(T,) + (k—1i)+ D(T,_).
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Therefore. the minimum sum is given by
D(k) = MIN [k + D@i) + Dk —i)]. (3.1)
{nvoking the inductive hypothesis, we obtain from (3.1)
D(k) zk;urgilsrg [ilog i+ (k—1i)log (k —i)]. (3.2)

It is easy to show that the minimum occurs at i = k/2. Thus

-~

D(k)zk+klog§=klogk.

We conclude that D(m) = m log m for all m = 1.

Now we claim that a decision tree T sorting n random elements has at
least n! leaves. Moreover, exactly n! leaves will have probability 1/n! each,
and.the remaining leaves will have probability zero. We may remove from T
all vertices that are ancestors only; of leaves of probability zero, without
changing the expected depth of 7. We are thus left with a tree T’ having n!
leaves each of probability 1/n!. Since D(T') = n! log n!, the expected depth
of 7' (and hence of T) is at least (1/n!) n! log n! =log n!. O

Corollary. Every comparison sort makes at least c¢n log n comparisons
on average for some constant ¢ > 0.

There is an efficient algorithm, called Quicksort, which is worth men-
tioning because its expected running time, while bounded below by cn log n
for some constant ¢, as any comparison sort must be, is a fraction of the run-
ning time of other known algorithms when implemented on most real ma-
chines. The fact that Quicksort has a worst-case running time which is qua-
dratic is not important in many applications.

Algorithm 3.5. Quicksort.
Input. Sequence S of n elements, a,, ds, . . . , Gy.
Output. The elements of S in sorted order.

Method. We define the recursive procedure QUICKSORT in Fig. 3.7. The
Ugorithm consists of a call to QUICKSORT(S). O
E
Theorem 3.8. Algorithm 3.5 sorts a sequence of n elements in O (n log n)
expected time. ’

T""’f- The correctness of Algorithm 3.5 follows by a straightforward induc-
1on on the size of §. For simplicity in the timing analysis assume that all ele-
fents of S are distinct. This assumption will maximize the sizes of S, and S,
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procedure QUICKSORT(S):
1. if S contains at most one element then return S

else
begin
2. choose an element « randomly from S:
3. let S,, S., and §; be the sequences of elements in § less
than, equal to, and greater than «, respectively;
4, return (QUICKSORT(S,) followed by S, followed by

QUICKSORT(S3))
end

Fig. 3.7. Quicksort program.

constructed at line 3, and therefore maximize the average time spent in the
recursive calls at line 4. Let T (n) be the expected time required by QUICK-
SORT to sort a sequence of n elements, . ,Clearly, 7(0) = T (1) = b for some
constant b. .

Suppose that element « chosen at line 2 is the ith smallest element of the
n elements in sequence S. Then the two recursive calls of QUICKSORT at
line 4 have an expected time of T(i — 1) and T (n — i), respectively. Sinceiis
equally likely to take on any value between 1 and n, and the balance of
QUICKSORT(S) clearly requires time cn for some constant ¢, we have the
relationship:

Tn) < cn +%i [TG—1D)+Tn—1i)], for n= 2. (3.3)
i=1

Algebraic manipulation of (3.3) yields
2 n-=1 B
T(n) <cn+ - ;0 T(). (3.4)
We shall show that for n = 2, T(n) < kn log. n, where k= 2¢ + 2b and
b=T(0)=T(1). For the basis n=2. T(2) < 2c¢ + 2b follows immediately
from (3 4). For the induction step, write (3.4) as

¢ 4h 2 ki . <
<< ¢ — —_— -
n) =cn+ p + ; i=§z: [ log,. i. (3.5)

Since i/ log, i is concave upwards, it is easy to show that
n—1

2 ilog, i = f xlog, x dx =

i=2

Substituting (3.6) in (3.5) yields

n*log.n n*
B

3 T (3.6)

T(n) =cn+ i”ﬁ + kn log, n — /‘_,l (3.7)
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Gince n =2 and k=2c+2bh, it follows that cn+4b/n < kn/2. Thus
7(n) < kn log, n follows from (3.7). U

As a practical matter, we should consider two details. First is the
method of “randomly’ selecting element « in line 2 of QUICKSORT. The
jmplementer might be tempted to take the easy way out by always choosing.
say. the first element of sequence S. This choice could cause the perform-
ance of QUICKSORT to be considerably worse than is implied by Eq. (3.3).
Frequently, the sequence passed to a sorting routine is “somewhat’ sorted
already, so the first element has a higher than average probability of being
small. As an extreme case, the reader can check that if QUICKSORT is set
to work on an already sorted sequence with no duplicates, and if the first ele-
ment of S is always chosen to be the element a at line 2, then sequence S, will
always contain one fewer element than §. In this case QUICKSORT would
take a quadratic number of steps.

A better technique for choosing the partition element « at line 2 would be
to use a random number generator to generate an integer i, | </ < |S|,t and
then select the ith element in S as a. A somewhat simpler approach would be
to choose a sample of elements from S and then use the median of the sample
as the partition element. For example, the median of the first, middle, and
last elements of S could be used as the partition element.

The second matter is how to efficiently partition S into the three
sequences S,, S., and S;. It is possible and desirable to have all n original
elements in an array A. As QUICKSORT calls itself recursively, its
argument S will always be in consecutive array entries, say
A[f],A[f+1],...,A[l] for some | = f<I[=<n. Having selected the
“random’ element a, we can arrange to partition S in place. That is, we can
move S, to A[f],A[f+1],...,A[k], and S, US, to A[k+ 1],
A[k+2],...,A[l], for some k,f <k <I. Then, S, U S, can be split up if
desired, but it is usually more efficient to simply call QUICKSORT recur-
sively on S, and S, U S,, unless one of these sets is empty.

Perhaps the easiest way to partition S in place is to use two pointers to
the array, i and j. Initially, i =f, and at all times, A [f] through A [i — 1] will
contain elements of §,. Similarly, j = initially, and at all times A[j + 1]
through A (/] will hold elements of S, U S;. The routine in Fig. 3.8 will per-
form the partition. .

After the partition. we can call QUICKSORT on the array A [f] through
A[i—1]. which is S,. and on the array 4 [j + 1] through A4 [/]. which is
S, U S, However. if i = f, in which case S, = @, we must first remove at
least one instance of «. from S, U S,. Itis convenient to remove the element
on which we partitioned. It should also be noted that if this array represent-

t We use |§| to denote the length of a sequence S.
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W19 =

AN

o ®

begin
i< fi
j< L
while i < j do
begin
while A[j] = aandj = fdoj«j— I;
while A[i] <aandi=ldoi<i+1;
if i < j then
begin
interchange A [i] and A [j];
i<—i+1;
jei-1
end
end
end

Fig. 3.8. Partitioning S into S, and S, U S, in place.

@ [ 1]9]3]1]2]7]|6]8]3
! 1
i J
® | 1[2]3]1|9]7]|6]8]|3
r1
i J
(c) [ 1|211}1319]1716[8]3
(I
Joi

Fig. 3.9. Partitioning an array.

3.5
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ation is used for sequences. we can pass arguments to QUICKSORT simply
py passing pointers to the first and last locations of the portion of the array

peing used.
Example 3.5. Let us partition the array A

1 23 4 5 6 7 8 9

[§S]
~
0
(US)

6191311

about the element « = 3. The while statement of line 4 results in j being
decreased from 9, its initial value. to 7, since A[9] = 3 and A[8] = 8 are both
equal to or greater than a, but A[7] = 1 < a. Line 5 does not increase i from
its initial value of 1, since A[1] =6 = «. Thus we interchange A[1] and
A[7], seti to 2 and j to 6, leaving the array of Fig. 3.9(a). The results after
the next two passes through the loop of lines 3-9 are shown in Fig. 3.9(b) and
(c). At this point / > j, and the execution of the while statement of line 3 is
complete. (]

2.6 ORDER STATISTICS

A problem closely related to sorting is that of selecting the kth smallest ele-
ment in a sequence of n elements.t One obvious solution is to sort the
sequence into nondecreasing order and then locate the kth element. As we
have seen, this would require n log n comparisons. By a careful application
of the divide-and-conquer strategy, we can find the Ath smallest element in
O(n) steps. An important special case occurs when & = [n/2], in which case
we are finding the median of a sequence in linear time.

Algorithm 3.6. Finding the kth smallest element. >

Input. A sequence S of n elements drawn from a linearly ordered set and an
integer k, 1 < k < n.

Output. The kth smallest element in S.
Method. We use the recursive procedure SELECT in Fig. 3.10. O

. Let us examine Algorithm 3.6 intuitively to see why it works. The basic
idea is to partition the given sequence about some element m into three

subsequences S,. S.. S, such that S, contains all elements less than m. S, all
M

t Strictly speaking. the kth smallest of a sequence a,. da. . . . . a, is an element 5 in
the sequence such that there are at most k — | values for i for which a; < b and at least
k values of i for which a; = b. For example. 4 is the second and third smallest ele-
Mment of the sequence 7. 4. 2. 4.
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procedure SELECT(A. §):

. if |S| < 50 then
begin

2. sort §:

3. return Ath smallest element in §
end

else

begin

4. divide S into ||S|/5] sequences of 5 elements each

S. with up to four leftover elements;

6. sort each 5-element sequence;

7. let M be the sequence of medians of the 5-element sets;

8. m <« SELECT([|M|/2], M);

9. let §,, S,, and S; be the sequences of elements in S less

than, equal to, and greater than’ m, respectively;
10. if |S,| = k then return SELECT(. S,)
else .

11. if (|S,] + |S:] = k) then return m .

12. else return SELECT(k — |S,| — |S.l, S3)
end

Fig. 3.10. Algorithm to select kth smallest element.

Elements known to

be less than
l—- or equal tom
o7 T T T T . . .
\n/5) sorted sequences | ' Sequence M shown
represented as lo . . ’II . . . in sorted order
columns with smallest | m.o_
element on top 1 N 1
|® . . Lto . . o
________ J —
' l
() 3 L] | L] . () ] |
| I
3 * . L'_ o __ s ij
by

<
Elements known to ——,

be greater than
or equal tom

Fig. 3.11 Partitioning of S by Algorithm 3.6.
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elements equal to m. and S, all elements greater than m. By counting the
number of elements in S, and in §.-we can determine in which of §,. S,.or §,
the kth smallest element lies. In this manner we can replace the given
problem by a smaller problem.

In order to obtain a linear algorithm we must be able to find a partition
element in linear time such that the sizes of the subsequences S, and §; are
each no more than a fixed fraction of the size of S. The trick is in how the
partition element m is chosen. The sequence S is partitioned into sub-
sequences of five elements each. Each subsequence is sorted and the median
is selected from each subsequence to form the sequence M. Now M contains
only | n/5] elements, and we can find its median five-times faster than that of a
sequence of n elements.

Furthermore at least one-fourth of the elements of S are less than or
equal to m and at least one-fourth of the elements are greater than or equal to
m. This is illustrated in Fig. 3.11. The question arises, why the ‘“‘magic
number” 5?7 The answer is that there are two recursive calls of SELECT,
each on a sequence a fraction of the size of §. The lengths of the two
sequences must sum to less thap |S| to make the algorithm work in linear
time. Numbers other than 5 will work, but for certain numbers sorting the
subsequences will become expensive. We leave it as an exercise to deter-
mine which numbers are appropriate in place of 5.

Theorem 3.9. Algorithm 3.6 finds the Ath smallest element in a sequence
S of n elements in time O(n).

Proof. The correctness of the algorithm is a straightforward induction on the
size of S, and this part of the proof is left for an exercise. Let T(n) be the
time required to select the kth smallest element from a sequence of size n.
The sequence of medians M is of size at most n/5 and thus the recursive call

SELECT([IM1/2], M)

requires at most T (n/5) time.

Sequences S, and S, are each of size at most 3n/4. To see this note that
at least | n/10] elements of M are greater than or equal to m, and for each of
these elements there are two distinct elements of S which are at least as large.
Thus S, is of size at most n — 3 |n/10], which for n = 50 is less than 3n/4. A
similar argument applies to S;. Thus the recursive call at line 10 or 12
requires at most 7(3n/4) time. All other statements require at most O(n)
time. Thus, for some constant ¢, we have

2

T(n) =< cn, for n = 49,
Tn) < Tw/5)+ T(3n/d) + cn, for n = 50.

From (3.8) we can prove by induction on n that T(n) < 20cn. O
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3.7 EXPECTED TIME FOR ORDER STATISTICS

In this section we shall consider expected time results for selecting the Ath
smallest element in a sequence of n elements. We shall see that at least n — |
comparisons are needed to find the Ath smallest element both in the worst
case and in the expected time case. Thus the selection algorithm given in the
previous section is optimal under the decision tree model to within a constant
factor. In this section we shall present another selection algorithm. one
whose worst-case behavior is quadratic but whose expected time behavior is a
fraction of that of Algorithm 3.6. _

Let S ={a,. as, ....a,} be a set of n distinct elements. Let T be the
decision tree of an algorithm for finding the Ath smallest element in §. Every
path p in T defines a relation R, on S such that «;R ,a; if two distinct elements
a; and a; are compared at some vertex on p and the outcome of that compari-
son is either a; < ajor a; = a;.t Let R} be the transitive closure of the rela-
tion R,.% Intuitively, if ¢;R} a;, then the sequence of ¢omparisons represented
by path p determines that a; < a; since no+#element is compared to itself.

Lemma 3.3. If path p determines that element a,, is the kth smallest in S,
then for each i # m, | =i < n, either a;R}a,, or a,R}a;. "'

Proof. Suppose some element a, is unrelated to a, by the relation Rj. We
shall show that by placing «, either before «,, or after «,, in the linear ordering
on S, we can contradict the assumption that path p has correctly determined
that a, is the kth smallest element in S. Let S,={aj|a;R}a,} and
S, = {a;|la,R}a;}. Let S; be the remaining elements in S. By hypothesis, a,
and a,, are in S,.

If a; is any element in S, (respectively, §,) and a,R}a; (respec-
tively, a;R}a,), then by transitivity, a; is also in S, (respectively,. S,).
Thus we may construct a linear order R consistent with R} such that all
elements in S, precede all those in S; which, in turn, precede all those in S,.

By hypothesis «, is unrelated by R} to any element in S;. Suppose that
a, precedes a,, in this linear order R, i.e.. a,Ra,,. Then we can find a new
linear order R’ which is the same as R except that «, is moved immediately
after a,,. R’ is also consistent with R;}. For each of R and R’ we can find
distinct integer values for the «’s that will satisfy either R or R’, respectively.
But «,, cannot be the kAth element in both cases, since a,, is preceded by one
fewer element in R’ than in R. We may therefore conclude that if some ele-
ment in § is not related by R} to u,,.then T does not correctly select the Ath
‘element in the set S. The case a,,Ra, is handled symmetrically. O

+ Recall that we assume each comparison « vs. b has outcome « < h or b < a. If
a, < aj;. the comparison was «; vs. a; with outcome «; << a;. If a, = a;. the comparison
was a; vs. a; with outcome «; = a,. ]

1 The transitive closureof a relation R is the relation R* defined by ¢R*d if and oniy if
there is a sequence ¢,Re.. e.Rey. . . .. ¢w—Re,. where m =2, ¢ =¢, and d = ¢,,.
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Theorem 3.10. If T is a decision tree that selects the Ath smallest ele-
ment in a set S, ||S| = n, then every leaf of T has depth at least n — 1.

Proof. Consider a path p in T from the root to a leaf. By Lemma 3.3, either
a;Rian or ayRja; for each i # m, where a,, is the element selected as kth
smallest. For element a;, i # m, define the key comparison for a; to be the
first comparison on p involving «a; such that either:

1. a; is compared with «,,,

2. a; is compared with «a;, a;R,a;, and a;R}a,,, or

3. a; is compared with a;, a;R,a;, and a,,R}a;.

Intuitively, the key comparison for «; is the first comparison from which we
can eventually determine whether a; precedes or follows a,.

Clearly. every element a; except a,, has a key comparison, else we would
have neither a;R}a,, nor a,,R}a;. Furthermore, it is easy to see that no com-
parison may be the key comparison for both elements being compared. Since
there are n — 1 elements that must be involved in key comparisons, the path p
must have length at least n — 1. [J

. L . .
Corollary. Finding the kth smaliest element in S requires at least n — 1
comparisons in either the expected or worst-case sense.

In fact, a stronger result than Theorem 3.10 can be proven for all £ ex-
cept 1 or n. See Exercises 3.21-3.23.

When it comes to finding a good expected-time algorithm for computing
the kth smallest element in §, a strategy similar to Quicksort works well.

Algorithin 3.7. Finding the kth smallest element.

Input. A sequence S of n elements drawn from a set with linear order =, and
an integer k, 1 = k < n.

Output. The kth smallest element in S.
Method. We apply the recursive procedure SELECT given in Fig. 3.12. O
Theorem 3.11. Algorithm 3.7 has a linear expected running time.

Proof. Let T(n) be the expected running time of SELECT on a sequence of
n elements. For simplicity, assume that all elements in S are distinct. (The
results do not change if there are repeated elements.)

Suppose the element a chosen at line 2 is the ith smallest element in S.
Then i may be any bf 1, 2, ..., n with equal probability. If i > &, we call
SELECT on a sequence of.i— | elements, and if i < k, we call it on a
Sequence of n — i elements. Thus the expected cost of the recursion at line 4
or 6 is

k— n ’ n—1 n—1
%[g Th—i)+ 3 T(i—l)]=’—]1[ S T0+y T(i)].

i=k+1 i=n—k+1
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procedure SELECT(A. S):

1. if |S| = | then return the single element in §
else

begin
2. choose an element ¢ randomly from §:
3. let S,. S.. and S, be the sequences of elements in S less

than. equal to. and greater than a, respectively:
4. if |S,| = & then return SELECT(4. S,)
else

5. if |S,| + |Ss| = & then return «
6. else return SELECT(Ak — |S,| — |S.[. Sy)

end

Fig. 3.12. Selection algorithm.

7
The rest of procedure SELECT requireg.cn time for some constant ¢, so
we have the following inequality for n = 2:

n—1 n—1 A

T(n) = cn + MAX {i [ T+ S T(i)]}. (3.9)
k n i=n—k+1 i=k

We leave it as an inductive exercise to show that if T7(1) = ¢, then for all

n=2 T < 4cn. O

EXERCISES

3.1 Use Algorithm 3.1 to sort the strings abc, ach, bca, bbc, acc, bac, baa.

3.2 Use Algorithm 3.2 to sort the strings «a, bc, aab, baca, cbe, cc.

3.3 Test whether the two trees in Fig. 3.13 are isomorphic in the sense of Example
3.2,

3.4 Sort the list 3, 1.4, 1,5,9,2.6,5.3.5.8,9. 7 using (a) Heapsort, (b) Quick-
sort, (c) Mergesort (Algorithm 2.4). In each case. how many comparisons are
made?

3.5 Consider the following algorithm to sort a sequence of elements ay, ds, . . . . d,
stored in array A. Thatis, A[i]=a;for | =i = n.

procedure BUBBLESORT(A):
for j=n — | step — | until 1 do
for i = | step | until j do
if A[i + 1] < A[i] then interchange A[i] and A[i + 1]

a) Prove that BUBBLESORT sorts the elements in A into nondecreasing order.
b) Determine the worst-case and expected running times of BUBBLESORT.
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Fig. 3.13 Two trees.

Complete the proof that a heap can be constructed in linear time (Theorem 3.5).
Complete the proof that Heapsortl requires O(n log n) time (Theorem 3.6).
Show that the worst-case running time of Quicksort is O(nzj.

What is the worst-case running time of Algorithm 3.7 for finding the kth smallest
element?

Prove that the expected time to sort n elements is bounded below by c¢n log n
for some constant ¢ by completing the proof of Theorem 3.7 and solving
Eq. (3.2), on p. 93.

Complete the proof that Algorithm 3.6 finds the kth smallest element in time
O(n) (Theorem 3.9) by solving Eq. (3.8), on p. 99.

Prove the correctness of the partitioning routine in Fig. 3.8 (p. 96) and
analyze its running time.

Complete the proof that Algorithm 3.7 for finding the Ath smallest element has
expected time O(n) (Theorem 3.11) by solving Eq. (3.9), on p. 102. ?
Show that the expected number of comparisons used by Algorithm 3.7 is at
most 4n. Can you improve this bound if you know the value of & for which the
algorithm will be used?

Let S be a sequence of elements with m; copies of the ith element for
l =i=<k Letn=3Zk,m;. Prove that

n!
0 (" + log (m,! my! .- mk!))

comparisons are nefessary and sufficient to sort S by a comparison sort.

LetS,.S...... S, be sets of integers in the range 1 to n. where the sum of the
cardinalities of the S;’s is n. Describe an O(n) algorithm to sort all of the §;s.
Given a sequence a,. @.. . . ., a, and a permutation (1), w(2), . . . . w(n). write
a Pidgin ALGOL algorithm to rearrange the sequence in place into the order
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Aapre Qainte o o e - dam. What are the worst-case and the expected running times
of your algorithm?

In building a heap of size 2% — 1. we built two heaps of size 2¥7! — 1, then com-
hined them by adding a root and pushing the element at the root down to its
proper place. One could just as easily have built a heap by adding one element
at a time as a new leaf and pushing the new element up the tree. Write an
algorithm for building a heap by adding one leaf at a time and compare the
asymptotic growth rate of your algorithm to that of Algorithm 3.3.

Consider a rectangular array. Sort the elements in each row into increasing
order. Next sort the elements in each column into increasing order. Prove that
the elements in each row remain sorted.

Let «,.da. . ... a, be a sequence of elements and let p and ¢ be positive in-
tegers. Consider the subsequences formed by selecting every pth element. Sort
these subsequences. Repeat the process for ¢q. Prove that the subsequences of
distance p remain sorted.

:’.
Consider finding both the largest and second largest elements from a set of n
elements by means of comparisons. Prove’that n + [log n]1 — 2 comparisons
are necessary and sufficient.

Show that the expected number of comparisons needed to find the Ath small-
est element in a sequence of n elements is at least (1 + .75a(1 — a))n, where
a = k/n. and k and n are sufficiently large.

Show that in the worst case, n + MIN(k, n — & + 1) — 2 comparisons are nec-
essary to find the Ath smallest element in a set of n elements.
Let § be a set of n integers. Assume you can perform only addition of ele-
ments of § and comparisons between sums. Under these conditions how many
comparisons are required to find the maximum element of S?

Algorithm 3.6 divides its argument into subsequences of size 5. Does the
algorithm work for other sizes such as 3, 7, or 9?7 Select that size which
minimizes the total number of comparisons. Figure 3.14 indicates the fewest
known number of comparisons to sort various size sets. For n =< 12. the
number of comparisons shown is known to be optimal.

Algorithm 3.5 divides a sequence into subsequences of length 5, finds the
median of each subsequence, and then finds the median of the medians. Instead
of finding the median of the medians would it be more efficient to find some
other element such as the [4/5|th?

100 1Ep 1201314 15( 16/ 17

19
(98]
4=
L.
o)
~
oc
C

Comparisons | O [ 1| 3| S| 7 ]10{13[16]19(22]26]30|34(38| 42| 46| 50

Fig. 3.14. Fewest known comparisons to sort n elements.
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~3.27 Consider the following sorting method. Start with a sequence consisting of
onc element. Insert the remaining elements into the sequence one at a time by
binary search. Devise a data structure which will allow you to perform binary
search and insert elements quickly. Can you implement this sort in O(n log n)
time?

»+3.28 Instead of selecting one random element to partition a set of size n, as we did
in Quicksort or Algorithm 3.7, we could choose a small sample. say of size s.
find its median, and use that median to partition the entire set. Show how to
choose s as a function of n to minimize the expected number of comparisons
needed to sort.

=329 Extend the idea of Exercise 3.28 to minimize the” number of comparisons
needed to find order statistics. [Hint: Choose two elements from the sample set
that with high probability straddle the desired element.]

3.30 A sorting method is stable if equal elements remain in the same relative order in
the sorted sequence as they were in originally. Which of the following sorting
algorithms are stable?

a) BUBBLESORT (Exercise 3.5)

b) Mergesort (Algorithm 2.4)
c) Heapsort (Algorithm 3.4)

d) Quicksort (Algorithm 3.5)

i

Research Problem

3.31 There are several open problems concerning the number of comparisons needed
in certain situations. For example, one might wish to find the k smallest ele-
ments out of a set of n. The case k= 3 is discussed by Pratt and Yao [1973].
It is not known, for n = 13, whether the numbers given in Fig. 3.14 are optimal
for sorting n elements. For small n, the sorting algorithm of Ford and Johnson
[1959] is optimal in terms of the number of comparisons.

BIBLIOGRAPHIC NOTES

Knuth [1973a] is an encyclopedic compendium of sorting methods. Heapsort origi-
nated with Williams [1964] and was improved by Floyd [1964]. Quicksort is due to
Hoare [1962]. Improvements to Quicksort along the lines of Exercise 3.28 were
Suggested by Singleton [1969] and Frazer and McKellar [1970]. Algorithm 3.6. the
linear worst-case algorithm for finding order statistics. is by Blum, Floyd, Pratt,
Rivest, and Tarjan [1972]. Hadian and Sobel [1969] and Pratt and Yao [1973]
discuss the number of comparisons for finding certain order statistics.

The result in Exercise 3.21 is due to Kislitsyn [1964]. Exercises 3.22. 3.23 and
3.29 are from Floyd and*Rivest [1973], which also contains a stronger lower bound
than stated in Exercise 3.22. Exercises 3.19. 3.20. and some generalizations are dis-
Cussed in Gale and Karp [1970] and Liu [1972]. An interesting application of
sorting to finding the convex hull of a set of points in the plane is given by Graham
“972]. Stable sorting has been treated by Horvath [1974].
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A good way to approach the design of an efficient algorithm for a given
problem is to examine the fundamental nature of the problem. Often. a
problem can be formulated in terms of basic mathematical objects such as
sets, and an algorithm for the problem can be outlined in terms of fundamental
operations on these basic objects. An advantage of this point of view is that
we can examine several alternative data structures in order to select the one
that is best suited for the problem as a whole. Thus good data structure
design goes hand-in-hand with good algorithm design.

In this chapter we shall study seven fundamental operations on sets,
which are characteristic of many searching and information retrieval
problems. We present a variety of data structures for representing sets and
consider the suitability of each structure when a sequence of various types of
operations is to be performed.

4.1 FUNDAMENTAL OPERATIONS ON SETS - o~
We shall consider the following basic operations on sets.

1. MEMBER(«, S). Determine whether a is a member of S* if so, print
“yes,” otherwise, print ‘‘no.” '
INSERT(a, §). Replace set S by S U {a}.

DELETE(a, S). Replace set S by § — {a}.

UNION(S,, S:, S;3). Replacesets S, and S, by S;=5, U §,. We shall

assume that §; and S, are disjoint when this operation is performed, in

order to avoid the necessity of deleting duplicate copies of an element in

S, US,.

5. FIND(a). Print the name of the set of which a is currently a member.
If a is in more than one set, the instruction is undefined.

6. SPLIT(a, S). Here we assume S is a set with a linear order =< on its ele-
ments. This operation partitions S into two sets S, and S, such that S, =
{blb =aand b € S} and S, ={b|b > aand b € §}.

7. MIN(S). Print the smallest (with respect to =) element of the set S.

RSN

Many problems encountered in practice can be reduced to one or more
subproblems, where each subproblem can be abstractly formulated as a
sequence of basic instructions to be performed on some data base (universal
set of elements). In this chapter we shall consider sequences of instructions
o in which the instructions in o are drawn from a subset of these seven set
operations.

For example, processing sequences of MEMBER, INSERT, and DE-
LETE operations is an integral part of many searching problems. A data
structure that can be used to process a sequence of MEMBER, INSERT, and
DELETE operations will be called a dictionary. In this chapter we shall
study several data structures, such as hash tables, binary search trees, and
2-3 trees. which can be used to implement dictionaries.
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There are a number of questions of interest. We shall be primarily inter-
ested in the time complexity of o, that is, the amount of time required to ex-
ecute the instructions in o measured as a function of the length of o and the
size of the data base. We shall consider both average and worst-case time
complexity and shall make a further distinction between on-line and off-line

complexity.

Definition. The on-line execution of o requires that the instructions in o
be executed from left to right, executing the ith instruction in o without
looking at any following instructions. The off-line execution of o permits
all of o to be scanned before any answers need. to be produced.

Clearly, any on-line algorithm can be used as an off-line algorithm, but
the converse is not necessarily true. We shall see situations in which an off-
line algorithm is faster than any known on-line algorithm. However, in many
applications we are restricted to considering only on-line algorithms.

Given a sequence of instructions to execute, the most basic question is
what data structure we should use to represent the underlying data base.
Often, a problem will require a careful balance between two conflicting
desires. In the typical situation, the sequence will specify several operations
which are to be repeatedly performed, often in an unknown order. There
may be several data structures, each of which makes one operation very easy
to perform but other operations very hard. In many cases, the best solution
is a compromise. We often use some data structure that makes no operation
as easy as it could be, but one that makes the overall performance better than
that of any obvious approach.

We now give an example that illustrates how the spanning tree problem
for graphs can be formulated in terms of a sequence of set operations.

Definition. Let G = (V, E) be an undirected graph. A spanning tree of
G is an undirected tree S = (V, T). A spanning forest for G = (V, E) is
a set of undirected trees {(V, T,), V3, Ts), . . ., (Vi, T,)} such that the
Vi’s form a partitiont of V and each T; is a (possibly empty) subset of E.

A cost function ¢ for a graph G = (V, E) is a mapping from E to real
numbers. ¢(G'), the cost of a subgraph G' = (V', E') of G, is . c(e).

Example 4.1. Consider the algorithm shown in Fig. 4.1 for finding
§ = (V, T), a minimum-cost spanning tree of a given graph G = (V. E). This
minimum-cost spanning tree algorithm is discussed in detail in Section 5.1,
and its application is illustrated in Example 5.1.

The algorithm of Fig. 4.1 uses three sets, E, T, and VS. Set E contains
the edges of the given graph G. Set T is used to collect the edges of the final
Spanning tree. The algorithm works by transforming a spanning forest for G

————

tThatis, ¥, UV, U - - U V,=Vand ¥, N V;=0 fori = j.
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begin
. T < ¢:
2. VS « ¢
3. for each vertex v € V do add the singleton set {1} to VS
4, while ||VS|| > 1 do '
begin
5. choose (v, w). an edge in E of lowest cost:
6. delete (v, w) from E:
7. if v and w are in different sets W, and W, in VS then
begin
8. replace W, and W, in VS by W, U W,:
9. add (v, w)to T
end
end s

end g

O

Fig. 4.1. Minimum-cost spanning tree algorithm.

*

into a single spanning tree. The set V'S contains the vertex sets of the trees in
the spanning forest. Initially, VS contains each vertex of G in a set by itself.

We can view the algorithm as a sequence of operations that manipulate
the three sets E, T, and VS. Line 1 initializes the set 7. Lines 2 and 3 ini-
tialize V'S ; the elements of VS are sets themselves. Line 3 adds the initial
singleton sets to V/S. Line 4, which controls the main loop of this algorithm,
requires maintaining a count of the number of sets of vertices in the set VS.
In line 7 we determine whether edge (v, w) connects two trees in the spanning
forest. If so, the two trees are merged in line 8 and the edge (v, w) is added
to the final spanning tree in line 9.

Line 7 requires that we be able to find the name of the set in VS that con-
tains a particular vertex. (The actual names used for the sets in V'S are not
important, so arbitrary names can be ‘used.) Basically, line 7 requires that we
be able to handle the FIND primitive efficiently. Similarly. line 8 requires
that we be able to execute the UNION operation on disjoint sets of vertices.

Finding a data structure to handle either the UNION operation by itself
or the FIND operation by itself is relatively easy. However, here the data
structure should be one in which both UNION and FIND are easy to
implement. Furthermore, since execution of the UNION operation in line 8
depends on the outcome of the FIND operations in line 7, the execution of
the required sequence of UNION and FIND instructions  must be on-line.
We shall study two such structures in Sections 4.6 and 4.7.

Consider the sequence of operations performed on the set of edges E.
At line 5 we need the MIN interrogation primitive and in line 6 we need the¢
DELETE primitive. We have already encountered a good data structure fo!
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these two primitives, the heap of Section 3.4. (Although there the heap was
used to find the largest element. it should be obvious that the heap can be
used just as easily 1o find the smallest element.)

Finally, the set T of edges for the spanning tree requires only the opera-
tion INSERT at line 9 to add a new edge to 7. A simple list suffices here. O

4.2 HASHING

Besides the question of which instructions appear in a given sequence of in-
structions o, another important issue in the selection of a suitable data struc-
ture to process o is the size of the data base (universal set) being manipulated
by the operations in o. For example, we saw in Chapter 3 that the problem
of sorting a sequence of n elements could be done in linear time using a
bucket sort if the elements were integers-in some suitable range. However,
if the elements were drawn from an arbitrary linearly ordered set, then
O(n log n) time was the best we could do.

In this section we shall consider the problem of maintaining a changing
set S of elements. New elements will be added to S, old elements will be re-
moved from S, and from time to time we shall have to answer the question,
*Is element x currently in §?” This problem is modeled naturally by a dic-
tionary: we need a data structure that will permit sequences of MEMBER,
INSERT, and DELETE instructions to be processed conveniently. We shall
assume that the elements that can appear in S are chosen from an extremely
large universal set, so that representing S as a bit vector is impractical.

Example 4.2. A compiler or an assembler keeps track in a *“‘symbol table” of
all the identifiers it has seen in the program it is translating. For most
programming languages the set of all possible identifiers is extremely large.
For example, in FORTRAN there are about 1.62 X 10° possible identifiers.
Thus it is infeasible to represent a symbol table by an array with one entry for
each possible identifier, independent of whether that identifier actually ap-
pears in the program.

The operations which a compiler performs on a symbol table are of two
types. First, new identifiers must be added to the table as they are encoun-
tered. This job involves setting up a location in the table into which the par-
ticular identifier is stored and into which data about the identifier (e.g.. is it
real or integer?) can be stored. Second. from time to time the compiler may
request information about an identifier (e.g.. is the identifier of type integer?).

Thus a data structure that can handle the operations INSERT and
MEMBER s likely to be satisfactory for implementing a symbol table. In
fact, the data structure discussed in this section is often used to implement a
symbol table. O

We shall consider hashing, a technique which handles not only INSERT
and MEMBER instructions. as needed in symbol table construction. but the
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A

o | —— [+ | F— - tsttorn=o0
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m-—1 _—b’_[_—‘—b[j-_—l——b *** List for n(a) =m — 1

Fig. 4.2 -A hashing scheme.

DELETE instruction as well. There are many variations on the theme of
hashing, and we shall consider only the basic idea here.

" A hashing scheme is represented by Fig. #:2. There is a hashing func-
tion h, which maps elements of the universal set (e.g., in the case of a symbol
table, the set of all possible identifiers) to the integers O through m — 1. We
assume throughout that, for all elements a, h(a) can be computed in a con-
stant amount of time. There is a size m array A whose entries are pointers to
lists of members of the set S. The list pointed to by 4 [i] consists of all those
elements a in § such that h(a) = i.

To execute the instruction INSERT(a, S). we compute /i(a) and then
search the list pointed to by A [A(a)]. If a is not on this list, it is appended to
the end of this list. To execute the instruction DELETE(a, S), we again
search the list A [i2(a)] and delete « if it appears on this list. Similarly,.
MEMBER(«. §) is answered by scanning the list 4 [h(a)].

The computational complexity of this hashing scheme is easy to analyze.
From a worst-case standpoint it is not very good. For example, suppose we
have a sequence o of n distinct INSERT operations. [t is possible that A
applied to each element to be inserted yields the same number, with the result
that all elements appear on the same list. In this situation, it requires time
proportional to / to process the ith instruction in . Thus hashing can require
time proportional to n* to add all » elements to the set S.

However, in an expected time sense hashing looks much better. If we
-assume that /i(a) is equally likely to be any value between 0 and m — 1, and
that n = m elements are to be inserted, then on inserting the ith element. the
expected length of the list on which it is placed is (i — 1)/m, which is always
less than 1. Thus the expected time needed to insert n elements is O(n). If
O(n) DELETE and MEMBER operations are executed in conjunction with
the INSERT operations. the total expected cost is still O(:1). ‘

Bear in mind that this analysis presumes m, the size of the hash table, to
be equal to or greater than »n. the maximum size of the set §S. However, n is
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usually not known in advance. A reasonable way to proceed when 1 is un-
known is to be prepared to construct a sequence of hash tables T,. T,

T...

We choose some suitable value for the size m of the initial hash table T,.
Then. once the number of elements inserted in T, exceeds /n, we create a new
hash table T, of size 2m and, by rehashing,t move all elements currently in T,
into T,. The old hash table T, can now be discarded. We can then continue
inserting more elements in T, until the number of elements exceeds 2m. At
this point we create a new hash table T, of size 4m, and rehash the elements
from T, to T,. In general, we create a table T, of size 2%m as soon as table
T.-, contains 2*"'m elements. We continue in this way until we have in-
serted all elements.

Consider the expected time required to insert 2* elements into a hash
table, using this scheme and assuming m1 = 1. We see that this process is
modeled by the recurrence

T(1) =1,
T(2%) = T(2%1) + 2, 4

whose solution is clearly T(2k) = 2¥+1 — 1,

We conclude that a sequence of n INSERT, MEMBER, and DELETE
instructions can be processed in O(n) expected time by hashing.

The choice of the hashing function 4 is important. If the elements to be
added to S are integers uniformly distributed in some range 0 to r, where
r >> pn, then h(a) can be taken to be a modulo m, where m is the size of the
current hash table. Other examples of hashing functions can be found in
some of the references cited at the end of the chapter.

4.3 BINARY SEARCH

In this section we shall compare three different solutions to a simple searching
problem. We are given a set S with n elements drawn from some large uni-
versal set. We are to process a sequence o consisting only of MEMBER in-
structions.

The most straightforward solution is to store the elements of S in a list.
Each MEMBER(a, S) instruction is processed by sequentially searching the
list until the given element « is found or until all of the elements in the list
have been examined. This solution requires time proportional to n X |o| to
Process all instructions in o both in the worst case and in the expected case.
The main advantage of this scheme is that it requires very little preprocessing

time,

—_——

t A new hashing function. one which will give values from 0 through 2m — 1. must be
used. . :
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“ procedure SEARCH(a. f. I):
if f > [ then return ‘‘no”
else
if a=A[|(f+ 1)/2]] then return “yes”
else
ifa < A[[(f+ 1)/2]] then
return SEARCH(a, f, [(f+D/2]— 1)
else return SEARCH(a, [(f+D/2] + 1,D

Fig. 4.3. Binary search algorithm.

Another solution is to enter the elements of S in a hash table of size ||S].
An instruction MEMBER(a, S) is executed by searching the list i(a). If a
good hashing function 4 can be found, then this solution requires O(|a|) ex-
pected and O(n|o|) worst-case time to process o. The primary difficulty is
finding a hashing function that will uniformly distribute the elements of §
throughout the hash table. e

If there is a linear order < on S, a third solution is to use binary search.
Here we store the elements of S in an array A. Next we sort the.array so that
A[l] <A[2] <---<A[n]. Then to determine whether an element a is in
S, we compare a with the element b stored in location [ (1 + n)/2]. Ifa=b,
we halt and answer ‘“‘yes.”” Otherwise, we repeat this procedure on the first
half of the array if a < b, or on the last half if @ > b. By repeatedly splitting
the search area in half, we need never make more than [log (n + 1)] compari-
sons to find a or to determine that it is not in S.

The recursive procedure SEARCH(a, f, ) given in Fig. 4.3 looks for ele-
ment a in locations f, f+ 1, f+ 2,..., ! of the array 4. In order to deter-
mine whether a is in S, we call SEARCH(a, 1, n).

To understand why this procedure works, we can imagine that the array
A represents a binary tree. The root is at location |[(1 + n)/2], and the left
and right sons of the root are located at [(1 + n)/4] and [3(1 + n)/4], and so
on. This interpretation of binary search will become clearer in the next sec-
tion.

[t can be easily shown that SEARCH makes at most [log (n + 1)] com-
parisons when looking for any element in A, since no path in the underlying
tree is longer than [log (n + 1)]. If all elements are equally likely to be
targets for a search, then it can also be shown (Exercise 4.4) that SEARCH
gives the optimal expected number of comparisons (namely, |o| X log n) to
process the MEMBER instructions in the sequence o.t

t Of course. hashing does not work by comparisons alone. so it is possible that
hashing is “*better” than binary search, and in many cases, it is.
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4.4 BINARY SEARCH TREES

Consider the following problem. We have a set S in which elements are
peing inserted, and from which elements are being deleted. From time to
time we may want to know whether a given element is in S or we may want to
know what is the smallest element currently in S. We assume that the ele-
ments being added to S come from a large universal set that is linearly or-
dered by a relation =. This problem can be abstracted as processing a
sequence of INSERT, DELETE, MEMBER, and MIN instructions.

We have seen that a hash table is a good data structure for processing
sequences of INSERT, DELETE, and MEMBER instructions. However, it
is not possible to find the smallest element in a hash table without searching
the entire table. A data structure that is suited for all four instructions is the
binary search tree.

Definition. A binary search tree for a set S is a labeled binary tree in
which each vertex v is labeled by an element /(v) € S such that

1. for each vertex u in the left subtree of v, l(u) < I(v),
2. for each vertex u in the right subtree of v, I(u) > /(v), and
3. for each element a € S, there is exactly one vertex v such that
lv)=a. :
Note that conditions 1 and 2 imply that the labels of the tree are in in-
order. Also, condition 3 follows from 1 and 2.

Example 4.3. Figure 4.4 shows one possible binary search tree for the
ALGOL keywords begin, else, end, if, then. The linear order here is lex-
icographic order. [J

Fig. 44 A binary search tree.
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To determine whether an element « is in a set S represented by a binary
search tree, we compare a with the label of the root. If the label of the root is
a, then a is clearly in S. If a is less than the label of the root, we then search
the left subtree of the root (if one exists). If ais greater than the label of the
root. we search the right subtree of the root. If ais in the tree, it will eventu-
ally be located. Otherwise, the process terminates when we would have to
search a nonexistent left or right subtree.

Algorithm 4.1. Searching a binary search tree.
Input. A binary search tree T for a set S and an element a.
Ourput. “Yes” if a € §, *‘no” otherwise.

Method. If T is empty,t return “‘no.” Otherwise let r be the root of T. The
algorithm then consists of a single procedure call. SEARCH(a, r), of the
recursive procedure SEARCH defined in Fig. 4.5. [

Algorithm 4.1 clearly suffices to executegthe instruction MEMBER(a, S).
Moreover, we can easily modify it to execute the instruction INSERT(a, S ).
If the tree is empty, we create a root labeled a. If the tree is not empty and
the element to be inserted is not found on the tree, then the procedure
SEARCH fails to find a son either at line 3 or at line 5. Instead of returning
“no” at line 4 or 6, respectively, a new vertex is created for the element and
attached where the missing son belongs.

Binary search trees are convenient for executing MIN and DELETE in-
structions as well. The smallest element in a binary search tree T is found by
following the path v, vy, . . ., v,, where v, is the root of T, v; is the left son
of vi., for 1 =i =< p, and v, has no left son. The label on v, is the smallest
element in 7. In certain problems it might be convenient to maintain a
pointer to v, to provide a constant access time to the smallest element.

Implementation of the instruction DELETE(a, S) is a little harder. Sup-
pose that the element a to be deleted is found at vertex v. Three cases can
occur,

1. Vertex v is a leaf. In this case remove vertex v from the tree.

2. Vertex v has exactly one son. In this case make the father of v the father
of the son, effectively removing v from the tree. (If v is the root, then
make the son of v the new root.)

3. Vertex v has two sons. Find the largest element b in the left subtree
of v. Recursively, remove the vertex containing b from the subtree
and then set the label of v to . Note that b will be the largest element
that is smaller than « in the entire tree.

1 Although our definition of a tree requires a tree to have at least one vertex, the root.
in many algorithms we shall treat the empty tree (the tree with no vertices) as a binary
tree.
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procedure SEARCH(a, v):

1. if @ = [(v) then return “‘yes”

else
2. if a < I(v) then
3. if v has a left son w then return SEARCH(u. w)
4, else return ‘‘no”’

else

5. if v has a right son w then return SEARCH(a, w)
6. else return ‘‘no”’

Fig. 4.5. Searching a binary search tree.

Fig. 4.6 Binary search tree after DELETE.

We leave a Pidgin ALGOL specification of the DELETE operation as an
exercise. Note that a single MEMBER, INSERT, DELETE, or MIN in-

struction can use O(n) time.

Example 4.4. Suppose we wish to remove the word if from the binary search
tree in Fig. 4.4. The word if is located at the root, which has two sons. The
largest word less than if (lexicographically) in the left subtree of the root is
end. We remove the vertex labeled end from the tree and replace if by end at
the root. Then, since end had one son (begin), we make begin be a son of the
root, leaving the tree of Fig. 4.6. (J

Consider the time complexity of a sequence of n INSERT instructions,
when a binary search tree is used to represent the underlying set. The time
required to insert an element a into a binary search tree is bounded by a con-
stant times the number of comparisons made between ¢ and the elements
already in the tree. Thus we can measure time in terms of the number of
Comparisons made.

In the worst case, adding n elements to a tree could require quadratic
lime. For example, suppose the sequence of elements to be added happens
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to be sorted (in increasing order). In this case the search tree would consist
of a single chain of right sons. However, if n random elements are inserted.
then the required insertion time is O(n log n), as the following theorem shows.

Theorem 4.1. The expected number of comparisons needed to insert n
random elements into an initially empty binary search tree is O(xn log n),
forn = 1.

Proof. Let T(n) be the number of comparisons between sequence elements

needed to create a binary search tree from the sequence a;, d,, ..., a,. We
assume 7(0)=0. Let by, b,,..., b, be this sequence sorted in ascending
order.

If a,, ..., a,is arandom sequence of elements, then «, is equally likely
to be b; for any j, | =j = n. Element a, becomes the root of the binary
search tree, and in the final tree the j — | elements b,, b,, . .., bj_; will be in
the left subtree of the root and the n — j elements by, bjy,, . . ., b, will be in

the right subtree. e
Let us count the expected number ‘of comparisons made when inserting

by, by, . . ., b;_, into'the tree. Each of these elements is compared once with
the root, giving a total of j — I comparisons with the root. Then inductively,
T(j— 1) more comparisons are necessary to insert b,, b,, ..., b;_, into the
left subtree of the tree. All told, j— 1 + T(j — 1) comparisons are made to
insert by, b,, ..., b;_; into the binary search tree. Similarly, n—j+
T(n —j) comparisons are made to insert bj.y, by, ..., b, into the tree.
Since j is equally likely to have any value between 1 and n, we have
n
T(n)=%2(n— 1+ TG — 1)+ T(n—))). (4.1)
i=1 ’
Simple algebraic manipulation of (4.1) yields
T ) 9 n—1 T '
n)=n—1+= ). 4.2
( 2 TW) (4.2)

Using the techniques of Section 3.5 we can show that
T(n) < knlogn

where kK = log,. 4 = 1.39. Thus the expected number of comparisons to insert
n elements into a binary search tree is O(n log n). O

. In summary, using the techniques of this section we can process a
random sequence of n INSERT, DELETE, MEMBER, and MIN instruc-
tions in O(n log n) expected time. The worst-case performance is qua-
dratic. However, even this can be improved to O(n log n) by one of the bal-
anced tree schemes (2-3 trees, AVL trees or trees of bounded balance)
discussed in Section 4.9 and Exerzises 4.30-4.37.
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4.5 OPTIMAL BINARY SEARCH TREES

In Section 4.3 we were given a set § = {a,, a,, .. .. a,}, that is, a subset of
<ome large universal set U, and we were asked to design a data structure that
would allow us to process efficiently a sequence o consisting only of
MEMBER instructions. Let us reconsider this problem, but this time let us
assume that, in addition to being given the set S, we are given the probability
that the instruction MEMBER(a, S) will appear in o for all elements a in the
universal set U. We would now like to design a binary search tree for S such
that a sequence o of MEMBER instructions can be processed on-line with
the smallest expected number of comparisons.

Let a,, a,, . . ., a, be the elements in the set S in jincreasing order, and
let p; be the probability of the instruction MEMBER(a;, §) in 0. Let g, be
the probability that an instruction of the form MEMBER(a, §), for some
a < a,, appears in g.° Let g; be the probability that an instruction of the form
MEMBER(a, §), for some a; < a < a;, appears in o. Finally, let g, be the
probability that an instruction of the form MEMBER(«, §), for some a > a,,
appears in . To define the cost of a binary search tree it is convenient to
add n + 1 fictitious leaves to the binary tree to reflect the elements in U — §.
We shall call these leaves 0, 1,

Figure 4.7 shows the bmary search tree of Fig. 4.4 w1th these fictitious
leaves. For example, the leaf labeled 3 represents those elements a such that
end < g < if.

We need to define the cost of a binary search tree. If element a is the
label I(v) of some vertex v, then the number of vertices visited when we

Fig. 4.7 Binary search tree with added leaves.
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Fig. 4.8 Subtree T ;.

process the instruction MEMBER(a, §) is one more than the depth of vertex
v. Ifa ¢ S, and a; < a < a;,,, then the number of vertices visited to process
the instruction MEMBER(a, §) is equal to the depth of the fictitious leaf i.
Thus the cost of a binary search tree can be defined as ’

) a "

3 pi X (DEPTH(a;) + 1) + 3" g; x DEPTH().

i=1 i=0 .
Once we have a minimum-cost binary search tree 7, we can execute a
sequence of MEMBER instructions with the smallest expected number of
vertex visits, simply by using Algorithm 4.1 on T to process each MEMBER
instruction.

Given the p;’s and g;’s, how do we find a minimum-cost tree? The
divide-and-conquer approach suggests determining the element a; that belongs
at the root. This would divide the problem into two subproblems: con-
structing the left subtree and constructing the right subtree. However, there
seems to be no easy way to determine the root, short of solving the entire
problem. This suggests we consider 2n subproblems, two for each possible
root. This naturally leads to a dynamic programming solution.

For 0 =i <j = n, let T;; be a minimum-cost tree for the subset of ele-
ments {a;;y, ity - - - , a;}. Let ¢;; be the cost of T}; and r;; tHe root of T;;.
The weight wy; of T is defined to be g; + (pisy + qixt) + - - - + (p; + q;).

A tree T consists of a root a;, plus a left subtree T;,_, which is a
minimum-cost tree for {d;4;, di42, . - - , dx—1 }, plus a right subtree T,; which is
a minimum-cost tree for {dy4;, @42, - - - . d;}, as shown in Fig. 4.8. If i=
k — 1, there is no left subtree and if & = j, there is no right subtree. For nota-
tional convenience we shall treat T; as the empty tree. The weight wy; of T
is g; and its cost ¢;; is 0.

In Ty, i < J, the depth of every vertex in the left and right subtrees has
increased by one from what the depths were in T;,_, and T,;. Thus cy, the
cost of T, can be expressed as

Cii = Wik—1 T Prt Wi+ Cig—y + Cyj
= wy + Cip—y + Ciye
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The value of A to use is that which minimizes the sum ¢; -, + ¢;. Thus to
find an optimal tree T; we compute the cost for each &, i < k =< j, of the tree
with root ay, left subtree T;,_,. and right subtree T;, and then select a tree of
minimum cost. The following algorithm contains the details.

Algorithm 4.2. Construction of an optimal binary search tree.

Input. A set of elements S = {a,, a,, ...,a,}. We assume a, < a, <
..+ < a, We are also given probabilities go.q,,....g,and p,, ps.....p,
such that for 1 =i < n, ¢g; denotes the probability of executing an instruction
of the form MEMBER(a. §) taken ‘over all a such that ¢; < ¢ < a;4,. g,
denotes the probability of executing MEMBER(a, §) for ¢ < a,. g, denotes
the probability of executing MEMBER(a, S) fora > a,,and for 1 =i < np;
denotes the probability of executing MEMBER(q;, S).

Qutput. A minimum cost binary search tree for S.
Method

1. For 0 =i <j = n, we compute r; and c; in order of increasing value of
J — i, using the dynamic programming algorithm of Fig. 4.9.
2. Having computed the r;’s we call BUILDTREE(O, n) to recursively con-
struct an optimal tree for T,,. The procedure BUILDTREE is given in
~ Fig. 4.10. O

begin
1. for i < O until n do
begin
2. Wi < g
3. Cii < 0
end;
4. for [ < 1 until n do
S. for i < O until n — [ do
begin
6. jei+l:
7. Wi < Wijm TPt g;t
8. let m be a value of k. i < k = j, for which ¢;4—; + ¢y
> is minimum;
9. Cij < Wi+ Cim-r T Cpijs
]0‘ Fy < Ay
“end
end

Fig. 4.9. Algorithm to compute roots of optimal subtrees.
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procedure BUILDTREE(, j):
begin
create vertex v;;, the root of T;;
label v;; by ry;:
let m be the subscript of rj; (i.e., r; = an):
if i < m— 1 then make BUILDTREE(/, m — 1) the left subtree of v;;
if m < j then make BUILDTREE(m, j) the right subtree of v;;

end

Fig. 4.10. Procedure to construct optimal binary search tree.

Example 4.5. Consider the four elements a, < a, < a; < a, with g, =14,
@1=1%, ¢2=q3= q4=15, and p, =%, p.=4%, p;=p,=1. Figure 4.11
shows the values of wy;, ry;, and c;; computed by the algorithm given in Fig.
4.9. For notational convenience, the values @fw; and c¢;; in this table have all
been multiplied by 16. :

=
0 1 2 3 4
[=j—i Woo = 2 wy =3 Wy =1 Wiz = | wy =1
l 0 oo =20 ¢, =0 Cop = €3 =0 =0
wor =9 Wi =6 Wy =3 wyy =3
l n =29 2=6 Cy=3 Gy =3
oy = @4 Ne = Uy Fay = Iy = 4y
Wy, = 12 wiy =8 Way =35
2 Cop =18 iy =11 Coy = 8
T = Ny = Fay = Ay
wWoy = 14 wiy =10
3 Coy = 25 ¢, =18
Fog = &y ny =y
Wy, =16
4 Coy = 33,
Toy = W

Fig. 4.11. Values of wy;, ¢;;, and r;;.
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Fig. 4.12 A minimum-cost tree.

-

For example, to compute r,, we must compare the values of ¢;; + ca4,
€12 + €34, and ¢y + ¢4y, Which (multiplied by 16) are, respectively, 8, 9, and
11. Thus in line 8 of Fig. 4.9, k=2 achieves the minimum, so r,,; = a,.

Having computed the table of Fig. 4.11, we construct the tree Ty, by
calling BUILDTREE(0, 4). The fesulting binary search.tree is shown in Fig.
4.12. This tree has cost 33/16. OJ '

Theorem 4.2. Algorithm 4.2 requires O(n3) time to construct an optimal
binary search tree.

Proof. Once we have computed the table of ry’s, we construct an optimal
tree from this table in O(n) time with the procedure BUILDTREE. There
are only n calls of the procedure and each call takes constant time.

The costliest part is the dynamic programming algorithm of Fig. 4.9.
Line 8 requires O(j — i) time to find a value of k that minimizes c;,—, + cy;.
The other steps in the loop of lines 5-10 require constant time. The outer
loop at line 4 is executed n times. The inner loop is executed at most n times
for each iteration of the outer loop. Thus the total cost is O(n3).

For the correctness of the algorithm, a simple induction on [=j—i
shows that r; and ¢;; are correctly computed at lines 9 and 10.

To show that an optimal tree is correctly constructed by BUILDTREE,
we observe that if a vertex 1;; is the root of a subtree for {a;,,, @iy, . - ., a;},
then its left son will be the root of an optimal tree for {d.,, @i4s, . . ., G-y},
where r;=a, and its right son will be the root of an optimal tree for
{dmsr s . . ., a;}. An inductive proof that BUILDTREE(, j) correctly
constructs an optimdl tree for {d;,, djss. - - . . a;} should thus be evident. O

In Algorithm 4.2 we may restrict our search for m in line 8 of Fig. 4.9 to
the range between tlie positions of the roots of T,;;_, and T;,,; and still be
Buaranteed to find a minimum. With this modification Algorithm 4.2 can be
made to find an optimal tree in O(n*) time.
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’
4.6 A SIMPLE DISJOINT-SET UNION ALGORITHM

Consider the handling of vertices in the spanning tree algorithm of Example
4.1. The set-processing problem that arose had the following three character-

istics.

1. Whenever two sets were merged, the two sets were disjoint.

2. The elements of the sets could be treated as integers in the range I
through n.

3. The operations were UNION and FIND.

In this section and the next we shall consider data structures for
problems of this nature. Assume we are given n elements, which we shall
take to be the integers 1, 2, ..., n. Initially, each element is assumed to be
in a set by itself. A sequence of UNION and FIND instructions is to be ex-
ecuted. A UNION instruction, we recall, is of the form UNION(4, B, C),
indicating that two disjoint sets named A4 and J. are to be replaced by their
union, and their union is to be named C. In applications it is often unimpor-
tant what we choose to name a set, so we shall assume that sets can be named
by integers in the range 1 to n. Moreover, we shall assume no two sets are
ever given the same name.

There are several interesting data structures to handle this problem. In
this section we shall present a data structure that is capable of processing a
sequence containing up to n — 1 UNION instructions and O(n log n) FIND
instructions in time O(n log n). In the next section we shall describe a data
structure that will handle a sequence of O(n) UNION and FIND instructions
with a worst-case time that is almost linear in n. These data structures are
also capable of handling sequences of INSERT, DELETE, and MEMBER
instructions with the same computational complexity. '

Note that the searching algorithms we considered in Sections 4.2-4.5 as-
sumed that the elements were drawn from a universal set that was much
larger than the number of instructions to be executed. In this section, we are
assuming that the universal set is approximately the same size as the length of
the sequence of instructions to be executed.

Perhaps the simplest data structure for the UNION-FIND problem is to
use an array to represent the collection of sets present at any one time. Let
R be an array of size n such that R[] is the name of the set containing ele-
ment i. Since the names of sets are unimportant., we may initially take
R[i]=1i,1 =i = n, to denote the fact that at the start the collection of sets is
{{1}. {2},....{n}} and set {i} is named .

The instruction FIND(/) is executed by printing the current value of
R[i]. Thus the cost of executing a FIND instruction is a constant, which is
the best we could hope for.
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To execute the instruction UNION(A4, B, C), we sequentially scan the
array R, and each entry containing either 4 or B is set to C. Thus the cost of
executing a UNION instruction is O(n). A sequence of n UNION instruc-
tions could require O(n?) time, which is undesirable.

This simple-minded algorithm can be improved in several ways. One
improvement would take advantage of linked lists. Another would recognize
that it is more efficient always to merge a smaller set into a larger one. To do
so. we need to distinguish between ‘‘internal names,” which are used to iden-
tify sets in the R array, and “‘external names,” the ones mentioned in the
UNION instructions. Both are presumably integers between 1 and n, but
not necessarily the same. -

Let us consider the following data structure for this problem. As before,
we use an array R such that R [/] contains the “‘internal” name of the set con-
taining the element i. But now, for each set 4 we construct a linked list
LIST[A] containing the elements of the set. Two arrays, LIST and NEXT,
are used to implement this linked list. LIST[A] is an integer j indicating that
j is the first element in the set whose internal name is 4. NEXT[;] gives the
next element in A, NEXT[NEXT[ jJ] the next element, and so on.

In addition, we shall use an array called SIZE, where SIZE[A] is the
number of elements in set A. Also, sets are renamed internally. Two arrays
INTERNAL_NAME and EXTERNAL_NAME associate internal and ex-
ternal names. That is, EXTERNAL_NAME[A] gives the real name (the
name dictated by the UNION instructions) of the set with internal name A4.
INTERNAL_NAME([/] is the internal name of the set with external name ;.
The internal names are the ones used in the array R.

Example 4.6. Suppose n=8 and we have the collection of three sets
{1, 3,5, 7}, {2, 4, 8}, and {6} with external names 1, 2, and 3, respectively.
The data structures for these three sets are shown in Fig. 4.13, where we as-
sume 1, 2, and 3 have the internal names 2, 3, and 1, respectively. (J

The instruction FIND(/) is executed as before, by consulting R[i] to de-
termine the internal name of the set currently containing element i. Then
EXTERNAL_NAME[R[i]] gives the real name of the set containing i.

A union instruction of the form UNION(/, J, K) is executed as follows.
(The line numbers refer to Fig. 4.14.)

l. We determine the internal names for sets [ and J (lines 1-2).

2. We compare the relative sizes of sets [ and J by consulting the array
SIZE (lines 3-4).

3. We traverse the list of elements of the smaller set and change the corre-
sponding entries in the array R to the internal name of the larger set
(lines 5-9).
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EXTERNAL
R NEXT LIST SIZE __NAME
2 3 | 6 1 3
3 4 2 1 4 1
2 5 3 2 3 2
3 8

INTERNAL
2 7 Sets (with external names) _NAME
I 0 1={1,3,5,7} o 2
I

2 0 2={2, 4, 8} o2 3
3 0 3={6} <3 1

Fig. 4.13. Data structures for UNION-FIND algorithm.

k143

9’



-~ A SIMPLE DISJOINT-SET UNION ALGORITHM 127

procedure UNION(/, J. K):
begin

1. A < INTERNAL_NAME[/];
2. B < INTERNAL_NAME[J];
3. wlg assume SIZE[A4] < SIZE[B]
4. otherwise interchange roles of A and B in
begin
5. ELEMENT <« LIST[4];
6. while ELEMENT # 0 do
begin
7. R[ELEMENT] < B;
8. LAST < ELEMENT;
9. ELEMENT « NEXT[ELEMENT]
end;
10. NEXT[LAST] « LIST[B]:
11. LIST[B] « LIST[A4];
12.~ SIZE[B] < SIZE[A] + SIZE[B];
13. INTERNAL_NAME(K] « B;
14. EXTERNAL_NAME[B] < K
end

end

Fig. 4.14. Implementation of UNION instruction.

4. We merge the smaller set into the larger by appending the list of elements
of the smaller set to the beginning of the list for the larger set (lines
10-12).:

5. We give the combined set the external name K (lines 13-14).

By merging the smaller set into the larger, the UNION instruction can be
executed in time proportional to the cardinality of the smaller set. The
complete details are given in the procedure in Fig. 4.14.

Example 4.7. After execution of the instruction UNION(1, 2, 4), the data
structures in Fig. 4.13 would become as shown in Fig. 4.15. (J

Theorem 4.3. Using the algorithm of Fig. 4.14 we can execute n — |
UNION operations (the maximum possible number) in O(n log n) steps.

Proof. Since the cost of each UNION is proportional to the number of ele-
Mments moved, apportibning the cost of each UNION instruction uniformly
among the elements moved results in a fixed charge to an element each time it
is moved. The key observation is that each time an element is moved from a
list, it finds itself on a list which is at least twice as long as before. Thus no
element can be moved more than log » times and hence the total cost charged
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Fig. 4.15. Data structures after UNION instruction.

EXTERNAL
R NEXT LIST SIZE __NAME
2 3 I 6 1 3
2 4 2 2 7 4
2 5 3 - _ _
2 8 4 - - -
2 7
INTERNAL

1 0 Sets (with external names) _—_NAME
2 0 3= {6} { I -
2 I 4=1{1,2,3,4,5,7,8} 2 -

3 I

4 2
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to any element is O(log n). The total cost is obtained by summing the costs
charged to the elements. Thus the total cost is O(x log n). O

It follows from Theorem 4.3 that if s, FIND and up to n — 1 UNION in-
structions are executed, then the total time spent is O(MAX(m. n log n)). If
m is on the order of n log n or greater, then this algorithm is actually optimal
to within a constant factor. However, in many situations we shall find that m
is O(n), and in this case, we can do better than O(MAX(m, & log n)). as we
shall see in the next scction.

4.7 TREE STRUCTURES FOR THE UNION-FIND PROBLEM

In the last section we presented a data structure for the UNION-FIND
problem that would allow the processing of n — 1 UNION instructions and
O(n log n) FIND instructions in time O(n log n). In this section we shall
present a data structure consisting of a forest of trees to represent the collec-
tion of sets. This data structure will allow the processing of O(n) UNION
and FIND instructions in almost linear time.

Suppose we represent each set A by a rooted undirected tree T ,, where
the elements of A correspond to the vertices of T,. The name of the set is at-
tached to the root of the tree. An instruction of the form UNION(, B, C)
can be executed by making the root of T, a son of the root of T, and changing
the name at the root of 75 to C. An instruction of the form FIND(/) can be
executed by locating the vertex representing element / in some tree T in the
forest, and traversing the path from this vertex to the root of T, where we find
the name of the set containing i.

With such a scheme, the cost of merging two trees is a constant. How-
ever, the cost of a FIND(/) instruction is on the order of the length of the
path from vertex i to its root. This path could have length n — 1. Thus the
cost of executing n — 1 UNION instructions followed by n FIND instruc-
tions could be as high as O(n2). For example, consider the cost of the follow-

ing sequence:

UNION(I. 2. 2)
UNION(2. 3. 3)

* UNIONn — 1. n.n)
FIND(1)
FIND(2)

FIND(n)
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P 7y

.

Fig. 4.16 Tree after UNION instructions,

The n — 1 UNION instructions result in the tree shown in Fig. 4.16. The
cost of the n FIND instructions is proportional to

=l nn—=1)
==

i=0

However, the cost can be reduced if the trees can be kept balanced. One
way to accomplish this is to keep count of the number of vertices in each tree
and, when merging two sets, always to attach the smaller tree to the root of
the larger. This technique is analogous to the technique of merging smaller
sets into larger, which we used in the last section.

Lemma 4.1. If in executing each UNION instruction the root of the tree
with fewer vertices (ties are broken arbitrarily) is made a son of the root
of the larger, then no tree in the forest will have height greater than or
equal to /: unless it has at least 2* vertices.

Proof. The proof is by induction on 4. For h =0, the hypothesis is true
since every tree has at least one vertex. Assume the induction hypothesis
true for all values less than /1 = 1. Let T be a tree of height i with fewest
vertices. Then T must have been obtained by merging two trees T, and T,
where T, has height i — 1 and T, has no more vertices than T,. By the in-
duction hypothesis T, has at least 2%~ vertices and hence T, has at least 2"~!
vertices, implying that T has at least 2" vertices. (J

Consider the worst-case execution time for a sequence of n UNION and
FIND instructions using the forest data structure, with the modification that
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(a) (b)

Fig. 4.17 Eff&ct of path compression.

in a UNION the root of the smaller tree becomes a son of the root of the
larger tree. No tree can have height greater than log n. Hence the execu-
tion of O(n) UNION and FIND instructions costs at most O(n log n) units
of time. This bound is tight, in that there are sequences of n instructions that
will take time proportional to »n log n.

We now introduce another modification to this algorithm, called path
compression. Since the cost of the FIND’s appears to dominate the total
cost, we shall try to reduce the cost of the FIND’s. Each time a FIND(/) in-
struction is executed we traverse the path from vertex i to its root r. Let i,
Vi, Vo, ..., Va, r be the vertices on this path. We then make each of i, Vi, Vs,

. » oy a son of the root. Figure 4.17(b) illustrates the effect of the instruc-
tion FIND(/) on the tree of Fig. 4.17(a).

The complete tree-merging algorithm for the UNION-FIND problem,

including path compression, is expressed by the following algorithm.

Algorithm 4.3. Fast disjoint-set union algorithm.

Input. A sequence o of UNION and FIND instructions on a collection of
sets whose elements consist of integers from 1 through n. The set names are
also assumed to be integers from 1 to n, and initially, element i is by itself in a
set named i.

Output. The sequence of responses to the FIND instructions in o. The
response to each FIND instruction is to be produced before looking at the
next instruction in o.
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Method. We describe the algorithm in three parts—the initialization, the
response to a FIND. and the response to a UNION.

1. Initialization. For each element i. | =i < n. we create a vertex v;. We
set COUNT[v;]=1. NAME[v;]=i. and FATHER[;]=0. Ini-
tially. each vertex v; is a tree by itself. In order to locate the root of set i,
we create an array ROOT with ROOT[/] pointing to v;. To locate the
vertex for element i, we create an array ELEMENT. initially with
ELEMENT[/] = ;.

Executing FIND(/). The program is shown in Fig. 4.18. Starting at
vertex ELEMENT(i] we follow the path to the root of the tree. making

19

begin
make LIST empty;
v < ELEMENT[/];, , -
while FATHER[v] # 0 do
begin
add v to LIST;
v < FATHER[v]
end;
comment v is now the root;
print NAME[v];
. for each w on LIST do FATHER[w] < v
end

Fig. 4.18. Executing instruction FIND(/).

begin
wlg assume COUNT[ROOT[/]] = COUNT[ROOT[,]]
otherwise interchange / and j in
begin
LARGE < ROOT[/]:
SMALL «< ROOT[/]:
FATHER[SMALL| < LARGE:
COUNT[LARGE] <« COUNT[LARGE] + COUNT[SMALL];
NAME[LARGE] < &: '
ROOT[k] < LARGE
end
end

Fig. 4.19. Executing instruction UNION(. j, k).
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a list of vertices encountered. At the root, the name of the set is printed.
and each vertex on the path traversed is made a son of the root.
3. Executing UNIONC(, j, k). Via the array ROOT, we find the roots of
‘ the trees representing sets i and j. We then make the root of the smaller
tree a son of the root of the larger. See Fig. 4.19. O

We shall show that path compression speeds up the algorithm consider-
bly. To calculate the improvement we introduce two functions F and G.

et
F(0)=1,
F (i) = 2F-1), fori > 0.

The function F grows extremely fast, as the table in Fig. 4.20 shows. The
unction G(n) is defined to be smallest integer £ such that F(k) = n. The
unction G grows extremely slowly. Infact, G(n) = 5 for all “practical” val-
tes of n, i.e., for all n < 265536

We shall now prove that Algorithm 4.3 will execute a sequence o of cn
JNION and FIND instructions in gt most ¢'nG(n) time, where ¢ and c’
wre constants, ¢’ depending on ¢. For simplicity, we assume the execution of a
JNION instruction takes one ‘“‘time unit” and the execution of the instruc-
ion FIND(/) takes a number of time units proportional to the number of ver-
-ices on the path from the vertex labeled / to the root of the tree containing
his vertex.t

n F(n)
0 1

1 2

2 4

3 16
4 65536
5 263536

»>

Fig. 4.20. Some values of F.

—_——
" Thus one “time unit” in the sense used here requires some constant number of steps
)na RAM. Since we neglect constant factors, order-of-magnitude results can as well

> expressed in terms of *“time units.”
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Definition. It is convenient to define the rank of a vertex with respect to
the sequence o of UNION and FIND instructions as follows:

1. Delete the FIND instructions from o.
2. Execute the resulting sequence o' of UNION instructions.
3. The rank of a vertex v is the height of v in the resulting forest.

We shall now derive some important properties of the rank of a vertex.
Lemma 4.2. There are at most n/2" vertices of rank r.

Proof. By Lemma 4.1 each vertex of rank r has at least 27 descendants in the
forest which results from executing o’. Since the sets of descendants of any
two distinct vertices of the same height in a forest are disjoint and since there
are at most n/27 disjoint sets of 27 or more vertices, there can be at most n/2"
vertices of rank r. O

Corollary. No vertex has rank greater than log n.

Lemma 4.3. If at some time during~thé"e*xecution of o, w is a proper
descendant of v, then the rank of w is less than the rank of v.

Proof. If at some time during the execution of o, w is made a descendant of
v, then w will be a descendant of v in the forest resulting from the execution of
the sequence o’. Thus the height of w must be less than the height of v, so
the rank of w is less than the rank of v. (J

We now partition the ranks into groups. We put rank r in group G (r).
For example, ranks 0 and 1 are in group 0, rank 2 is in group 1, ranks 3 and 4
are in group 2, ranks 5 through 16 are in group 3. For n > 1, the largest pos-
sible rank, [log n], is in rank group G(|log n}) = G(n) — 1.

Consider the cost of executing a sequence o of cn UNION and FIND
instructions. Since each UNION instruction can be executed at the cost of
one time unit, all UNION instructions in ¢ can be executed in O(n) time. In
order to bound the cost of executing all FIND instructions we use an impor-
tant ‘““bookkeeping” trick. The cost of executing a single FIND is appor-
tioned between the FIND instruction itself and certain vertices on the path in
the forest data structure which are actually moved. The total cost is com-
puted by summing over all FIND instructions the cost apportioned to them,
and then summing the cost assigned to the vertices, over all vertices in the
forest. '

We charge for the instruction FIND(/) as follows. Let v be a vertex on
the path from the vertex representing i/ to the root of tree containing /.

. If v is the root. or if FATHER([v] is in a different rank group from v,
then charge one time unit to the FIND instruction itself.

If both v and its father are in the same rank group. then charge one time
unit to v.

)
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By Lemma 4.3 the vertices going up a path are monotonically increasing
in rank. and since there are at most G (n) different rank groups. no FIND in-
struction is charged more than G (n) time units under rule 1. If rule 2 applies.
vertex v will be moved and made the son of a vertex of higher rank than its
previous father. If vertex v isin rank group g > 0. then v can be moved and
charged at most F(g) — F(g — 1) times before it acquires a father in a higher
rank group. In rank group 0, a vertex can be moved at most once before ob-
taining a father in a higher group. From then on, the cost of moving v will be
charged to the FIND instructions by rule 1.

To obtain an upper bound on the charges made to the vertices them-
selves, we multiply the maximum possible charge to any vertex in a rank
group by the number of vertices in that rank group, and sum over all rank
groups. Let N(g) be the number of vertices in rank group g > 0. Then by
Lemma 4.2:

F(y)
N(g) = ﬁ n/2"
r=F(y—1)+1

(n/zF(y%l)+l)[] +i+d4-- 0]
nf2Fe-1 :
n/F(g).

The maximum charge to any vertex in rank group g > 0 is less than or equal
to F(g) — F(g — 1). Thus the maximum charge to all vertices in rank group g
is bounded by n. The same statement clearly applies for g =0 as well.
Since there are at most G (n) rank groups, the maximum charge to all vertices
is nG(n). Therefore, the total amount of time required to process cn FIND
instructions is at most cnG(n) charged to the FIND’s and at most nG(n)
charged to the vertices. Thus we have the following theorem.

A IA 1A

Theorem 4.4. Let ¢ be any constant. Then there exists another constant
¢’ depending on ¢ such that Algorithm 4.3 will execute a sequence o of
cn UNION and FIND instructions on n elements in at most ¢’'nG (n)
time units.

Proof. By the above discussion. (J

It is left as an exercise to show that if the primitive operations INSERT
and DELETE, as well as UNION and FIND, are permitted in the sequence
g, then o can still be executed in O(nG (n)) time.

It is not knownswhether Theorem 4.4 provides a tight bound on the run-
ning time of Algorithm 4.3. However, as a matter of theoretical interest. in
the remainder of this section we shall prove that the running time of
Algorithm 4.3 is not linear in n. To do this. we shall construct a particular
sequence of UNION and FIND instructions. which Algorithm 4.3 takes
more than linear time to process.
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(a) R (b)
Fig. 4.21 Effect of partial FIND operation. )

Fig. 4.22 The tree T(2).

It is convenient to introduce a new operation on trees which we shall call
partial FIND, or PF for short. Let T be atree in whichv, v, ve,. .., Vp, W
is a path from a vertex v to an ancestor w. (w is not necessarily the root.)
The operation PF(v, w) makes each of v, v,, vy, ..., v,,_; sons of vertex w.
We say this partial FIND is of length m + 1 (if v = w, the length is 0). Fig-
ure 4.21(b) illustrates the effect of PF(v, w) on the tree of Fig. 4.21(a).

Suppose we are given a sequence o of UNION and FIND instructions.
When we execute a given FIND instruction in o we locate a vertex v in some
tree T and follow the path from v to the root w of 7. Now suppose we ex-
ecute only the UNION instructions in o, ignoring the FIND’s. This will
result in a forest F of trees. We can still capture the effect of a given FIND
instruction in o by locating in F the vertices v and w used by the original
FIND instruction and then executing PF(v, w). Note that the vertex w may
no longer be a root in F.
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In deriving a lower bound on the running time of Algorithm 4.3. we con-
sider the behavior of the algorithm on a sequence of UNION's followed by
PF’s which can be replaced by a sequence of UNION’s and FIND's whose
execution time is the same. From the following special trees we shall derive
particular sequences of UNION’s and PF’s on which Algorithm 4.3 takes
more than linear time.

Definition. For A = 0.. let T(k) be the tree such that

1. each leaf of T (k) has depth 4.
2. each vertex of height & has 2% sons, h = 1.

-~

Thus the root of T(k) has 2* sons, each of which is a root of a copy
of T(k—1). Figure 4.22 shows T(2).

Lemma 4.4. With a sequence of UNION instructions we can create, for
any k = 0, a tree T'(k) that contains as a subgraph the tree T(k). Fur-
thermore, at least one-quarter of the vertices in 7' (k) are leaves of T (k).

Proof. The proof proceeds by induction on k. The lemma is trivial for k = 0,
since T(0) consists of a single vertex. To construct T' (k) for k > 0, first con-
struct 2 + 1 copies of T'(k — 1). Form the tree T'(k) by selecting one copy
of T'(k — 1) and then merging into it, one by one, each of the remaining
copies. The root of the resulting tree has (among others) 2* sons, each of
which is a root of T'(k — 1).

Let N'(k) be the total number of vertices in T'(k) and let L(k) be the
wumber of leaves in T(k). Then )

N'(0) =1
N'(k)=Q2+1)N'(k—1), fork=1,

ind
L(0) =1
L(k)=2¥L(k—1), for k= 1;
)
IE
L(k) e 2.k 1
N’ (k) K ‘ —gll T+ for k = 1. (4.3)
[1@+1 =
i=1
We note that for i = 2, log, (1 +27%) < 2/, s0
TSR LA
log. (1:[ ]T-_;—T) = _,2 27 = -4 (4.4)
Jsing (4.3) and (4..4) together we have
L0 ey

hus proving the lemma. O
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We shall construct a sequence of UNION and PF instructions that will
first build the tree T'(k) and then perform PF’s on the leaves of the subgraph
T (k). We shall now show that for every [ > 0, there exists a k such that we
can perform a PF of length / in succession on every leaf of T (k).

Definition. Let D(c, I, ) be the smallest value of & such that if we
replace every subtree in T (k) whose root has height /i by any tree having /
leaves and height at least 1, then we may perform a PF of length ¢ on
each leaf in the resulting tree.

Lemma 4.5. D(c, [, h) is defined (i.e., finite) for all ¢, [, and / greater than
Zero.

Proof. The proof involves a double induction. We wish to prove the result
by induction on ¢. But in order to prove the result for ¢ given the result for
¢ — 1, we must also do an induction on /. ,

The basis, ¢ =1, is easy. D(1,/, h) = h for all [/ and h, since a PF of
length 1 does not move any vertices. .

Now for the induction on ¢; suppose that forall / and h, D(c — 1,1, h) is
defined. We must show that D(c, [, h) is defined for all / and 4. This is done
by induction on /L.

For the basis of this induction, we show

D(c,1,h) =D(c— 1,2 h+1).

Note that when [ = 1, we have substituted trees with a single leaf for subtrees
with roots at the vertices of height 4 in T (k) for some k. Let H be the set of
vertices of height 4 in this T(k). Clearly, in the modified tree each leaf is the
proper descendant of a unique member of H. Therefore, if we could do PF’s
of length ¢ — 1 on all the members of H, we could certainly do PF’s of length
¢ on all the leaves.

Let k= D(c — 1, 2**', h + 1). By the hypothesis for the induction on c,
we know that £ exists. If we consider the vertices of height 4 + 1 in T (k), we
see that each has 2**! sons, all of which are members of H. If we delete all
proper descendants of the vertices in H from T (k), we have in effect substi-
tuted trees of height 1 with 2**! leaves for each subtree having roots at height
h+ 1. By the definition of D, k = D(c — 1, 2"*', h + 1) is sufficiently large so
that PF’s of length ¢ — 1 can be done on all its leaves, i.e., the members of H.

Now, to complete the induction on ¢, we must do the inductive step for /.
In particular, we shall show:

D(c, 1, h) = D(c — I, 20@i=ta+d(ct=taN2 D(c [ — |, h)) for/ > 1.
(4.5)

To prove (4.5), let k= D(c, | — 1, h) and let £’ be the right side of (4.5). We
must find a way to substitute a tree of / leaves for each vertex of height 4 in
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T(k'). then perform a PF of length ¢ on each leaf. We begin by performing
the PF's on [ — 1 of the leaves of each substituted tree. By the inductive
hypolhesis for the induction on /. we can perform.the PF's on [ — 1 of the
jeaves of each substituted tre€ in these subtrees.

Having done PF’s on / — 1 of the leaves, we find that the /th leaf of each
substituted tree now has a father distinct from that of the /th leaf of any other
substituted tree. Call the set of such fathers F. If we can do PF’s of length
¢ — 1 on the fathers, then we can do PF’s of length ¢ on the leaves. Let S be
a subtree whose root had height A in 7(k'). It is easy to check that § has
aktk+102 legves in T(k'). Thus, after we have done the PF's, the number of
vertices in S which are also in F is at most 2¥¢+172_ What remains of S can
thus be regarded as an arbitrary tree with 2¥k+12 leaves, the vertices in F.
By the inductive hypotheses for ¢ and /, (4.5) holds. O

Theorem 4.5. Algorithm 4.3 has a time complexity which is greater than
cn for any constant c.

Proof. Assume there is a constant ¢ such that Algorithm 4.3 will execute any
sequence of » — 1 MERGE and n EIND instructions in no more than ¢ time’
units. Select d > 4¢, and calculate k= D(d, 1. 1). Construct T'(k) by a
sequence of UNION instructions. Since we can perform a PF of length ¢ on
each leaf of the embedded tree T (k). and since the leaves of T(k) make up
more than one-quarter of the vertices of T'(k), this sequence of UNION and
PF instructions will require more than ¢n time units, a contradiction. [J

4.8 APPLICATIONS AND EXTENSIONS OF
THE UNION-FIND ALGORITHM

We have seen how.a sequence of the primitive instructions UNION and
FIND naturally arose in the spanning tree problem of Example 4.1. In this
section we present several other problems which give rise to sequences of
UNION and FIND instructions. In our first problem, the computation can
be performed off-line, that is, the entire sequence of instructions can be read
before any answers need to be produced.

Application 1. Off-line MIN problem

We are given two types of instructions. INSERT(i) and EXTRACT_MIN.
We start with a set S which is initially empty. Each time an instruction
INSERT(/) is encoungered we place the integer i in S. Each time an instruc-
tion EXTRACT_MIN is executed. we find the minimum element in S and
delete it. '

Let o be a sequence of INSERT and EXTRACT_MIN instructions
such that for each i. 1 =i < n, the instruction INSERT(/) appears at most
once. Given the sequence o. we are to find the sequence of integers deleted
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for i < 1 until n do

begin
© j< FIND():
if j = Ak then
begin
print i “is deleted by the "j“th EXTRACT_MIN instruc-
tion™":
UNION(j, SUCC[/], SUCC[/]);
SUCC[PRED([/]] «< SUCC[/];
PRED[SUCC[,]] «< PRED[/]
end
end

Fig. 4.23. Program for off-line MIN problem.

r

by the EXTRACT_MIN instructions. ‘T he'f)roblem is off-line since we as-
sume we are given the complete sequence o before we need to compute even
the first element of the output sequence.

The off-line MIN problem can be solved by the following method. Let k&
be the number of EXTRACT_MIN instructions in . We may write o as
o,EoyEo3E - - - oxEoyyy, Wwhere each o;, 1 = j < k + 1, consists only of IN-
SERT instructions and E stands for one EXTRACT_MIN instruction. We
shall simulate o via the set union algorithm, Algorithm 4.3. We initialize a
sequence of sets for the set union algorithm by letting the set named j,
1 =j = k+ 1, contain the element i, provided the instruction INSERT(/)
occurs in the subsequence o;. Two arrays PRED and SUCC are used to
create a doubly linked sorted list for those values of j for which a set named j
exists. Initially, PRED[j]=j—1for 1 =j =< k+ 1 and SUCC[j]=j+1
for 0 = j = k. We then execute the program of Fig. 4.23.

It is easily seen that the execution time of this program is bounded by the
running time of the set union algorithm. Hence the off-line MIN problem is
O(nG (n)) in time complexity.

Example 4.8. Consider the sequence of instructions o =43 E2E | E,
where j stands for INSERT()j) and E stands for EXTRACT_MIN. Thus
0,=43,0,=2, 03=1, and o, is the empty sequence. The initial data
structure is the sequence of sets

1={3,4} 2={2} 3={1} 4=4.

In the first execution of the for loop, we determine FIND(1) = 3. Thus the
answer to the third EXTRACT_MIN instruction in o is 1. The sequence of
sets becomes

1={3.4} 2={2} 4={1}.
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At this point SUCC[2] is set equal to 4 and PRED([4] is set equal to 2. since
,cts named 3 and 4 have been merged into a single set named 4.

On execution of the next pass with i=2, we determine that
FIND(2) = 2. Thus the answer to the second EXTRACT_MIN instruction
s 2. We merge the set named 2 with the successor set (named 4) to obtain
he sequence of sets

1={3,4) 4=1{1,2}.

he final two passes determine that the answer to the first EXTRACT_MIN
nstruction is 3, and that 4 is never extracted. [J

Our next application is to a depth determination p;roblem. One place
vhere it arises is in the “equivalencing’ of identifiers in an assembly language
yrogram. Many assembly languages allow statements which declare that two
dentifiers represent the same memory location. Should an assembler en-
ounter a statement equivalencing two identifiers « and B, then it must find
he two sets S, and Sg, representing the sets of identifiers equivalent to « and
}. respectively, and replace these two sets by their union. Obviously, this
roblem can be modeled by a sequente of UNION and FIND instructions.

However, if we examine this problem more carefully, we can find another
vay to apply the data structures of the preceding section. Each identifier has
n entry in a symbol table, and if a group of identifiers are equivalent, it is
-onvenient to keep data about them in only one of the symbol table entries.
“his means that for each set of equivalent identifiers there is an origin, a place
1the symbol table holding information about the set, and each member has a
isplacement from the origin. The location in the symbol table for an iden-
fier is found by adding its displacement to the origin of its set. However,
then two sets of identifiers are made equivalent, the displacements from the
rigin must be modified. Application 2 is an abstraction of this problem of
pdating displacements.

Ppplication 2. Depth determination problem

Ve are given a sequence of two types of instructions: LINK(v, r) and
IND_DEPTH(v). We start with nundirected, rooted trees. each consisting of
single vertex i, 1 =i < n. Aninstruction LINK(v, r), where r is a root of a
ee and v is a vertex in a different tree, results in making the root » a son of v.
he conditions that v and r are in different trees and that r is a root insure that
1¢ resulting graph is sstill a forest. The instruction FIND_DEPTH(v)
‘quires determining and printing the current depth of vertex v.

If we maintain the forest using a conventional adjacency list represent-
ion and determine the depth of vertices in the obvious manner, the growth
te of the algorithm will be O(n?). Instead we shall use another forest.
hich we shall call the D-forest. to represent the original forest. The sole
Irpose of the D-forest is to enable us to calculate the depths quickly. Each
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vertex in the D-torest is assigned an integer weight such that the sum of the
weights along a path in the D-forest from a vertex 1 to the root is the depth ol
v in the original forest. For each tree in the D-forest a count is kept of the
number of vertices in the tree.

Initially. the D-forest consists of n trees. each consisting of a single
vertex corresponding to a unique integer i. 1 =/ < n. The initial weight of
each vertex is zero.

An instruction FIND_DEPTH(y) is executed by following the path from
v to the root . Let v, v,,.... v, be the vertices on the path (v, = v, v, =r).
Then

Kk
DEPTH() = WEIGHT[v].
i=1

In addition, we do path compression. Eachv;, | =i < k— 2, is made a son
of the root r. To preserve the property of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>